\section*{LIBRARY OF PRINCETON	2Fam
HEO! NOICAL SEMINARY	}

Digitized by the Internet Archive in 2016

$$
1
$$

J O U R N A L

OF THE

ASIATIC SOCIETY OF BENGLL,

EDITED BY

THE SECRETARIES.

VOL. XXVII.

Nos. I. то V. -185 s .
"It will fourish, if nafnralists, chemists, anfiquaries, philologers, and men ot science in diflerent parts of Asia, wilt commit their observations to writiog, and seand then to the Asiatic Society at Calcutta. It will languinh it such commmoniations shall be long intermitted; and it will die away, if they shall entirdy co:ive.".

Sir il m, Junes.

CALCU11「:

CONTENTS.

Page
Bhaskara's Knowlelge of the Differential Calculus.-By Bapu Deva Sitastuí, 213
Baddhism and Odinism, their similitude ; illustrated by extracts from Professor Holmboe's Memoir on les Traces de Bud- dhisme en Norwége.-By Babu Rajendralal Mittra,.. 49
Coins, Catalogne of the, in the Cabinet of the late Col. Stacey, with the estimated prices attached.-By li. Triomas, Eiaq. 201

- Collections of, lost during the rebellion.-By Georee H. Freeling, Esq. R. C. S. 169
Comparative Vocabulary of the Broken Tribes of Nepal, Gram- mar of the Baling Tribes, 393
___ Errata to, \&e., 1*
————Errata, to articles on, in Vol. XXTI., 3*
Cyclone (account of a) in the Andan:m Sea on the 9th and 10th April, 1858. - By G. Von Citebia, M. D 323
Ediets (two) bestowing land, recorded on Plates of Copper.- By Fitz-Edward Hadi, A. M. Esq. 217
Hypsometrical Measurements by means of the Barometer and the Boiling-point Thermometer.-By Jhares Bunaess, Esq. 337
Indian Are of Meridian, (the great) and the Figure of the Earth.- By the Venerable Arcindeacox Pratr. M. A. 201
Inseriptions, Public, at Lahore.-By Henry Coper Esy. 303
Karen lauguage-Notes on the - By the liev. Francis Mason, 129
* At the end of the volume.
Page.
Memoir ('Twenty-fifth) on the Law of Storms in India, beingthe Hon'ble Company's Steamer Pluto's Cyclone in theGulf of Martaban, 23rd and 24th, April, 1854.-By HevryPiddington, Esq.177
Meteorological Observations-Abstracts of the Results of- taken at the Surveyor General's Office, Calcutta.-By Babu Radianath Sickdar, for the month of July, 1857, xhix. and Dec. 1857, lvii. to xevi
Mole, Himalaya, Talpha Macrura, Description of a new species of.-By B. H. Hodgson, Esq. 176
l'arasnath Hill-discussion of some Meteorological Observations made on.-By Dr. G. Von Liebig, 1
Proceedings of the Asiatic Society.
——— for the months of November, December, January and Fetruary, 1857.58, 70
——_ for the month of March, 1858, 196;
———— for the months of May, July and August, 1858,.. 261
——_ for the months of September, October and No- vember, 1858, 365
Temperature of the Surface of the Ocean-Register of, from the Hooghly to the Thames.-By A. Campbelie, Esq. M.D. 170
Shells of India, Sand and fresh-water, Notes on the distri- bution of some of the --Part. II.--liy W. 'Theobald, Esq. Junr. 313
Vocabulary, Comparative, of the Broken Tribes of Nepal.-By B. H. Hongson, Esq.-Grammar of the Bahing 'Tribe,.. 393
Wilson's Sanskrit Dictionary extended and improved by Dr. Goldstücker, A few remarks on the first Fasciculus of, By Fitz-Edwamd Hall, M. A. 301
JNDEX TO NAMES OF CONTLIBUTOLS.
Bapu Deva Shastrí, Professor of Mathematics and Astronomy in the Govermment Sanskrit College, Benares-Bhaskara's Kinowledge of the Differential Calculus, 21:3
Bungess, Janes, Esq., On Hypsometrical Measurements by
Page
means of the Barometer and the Boiling-point Thermo- meter, 337
Campbell, A. Esq. M. D., A Register of the 'lempcrature of the Surface of the Ocean from the Hooghly to the Thames, 170
Cope, Henry, Esq. Public Inscriptions at Lahore, 309
Freeling, G. H. Esq. B. C. S., Coin Collections lost during the Rebellion, 169
Hall, Fitz-Edward, Esq. M. A., Of the Edict; bestowing Land, recorded on plates of copper, 217A few Remarks on the first Fasciculusof Professor Wilson's Sanskit Dictiomary, "as extendedand improved" by Dr. Goldstïcker,301
Hodgson, B. H. Esq., Deseription of a new species of Hima- layan Mole, Talpha Macrura, 176
Comparative Vocabulary of the Broken
Tribes of Nepal.-Grammar of the Bahing 'Tribe, 393
Liebig, Dr. G. Von, Discussion of some Meteorological Ob- servations made at Parasnath Ilill, 1
Account of a Cyclone in the Andaman
Sea, on the 9 th and 10th April, 1S58, 32;
Mason, 'The Rev. Francis, D. D., Notes of the Karen Lan- guage, 129
Piddington, Henry, Esq., President of Marine Courts.- Twenty-fifth Memoir on the Law of Storms in India, being the Hon'ble Company's Steaner Pluto's Cyclone in the Gulf of Martaban, 23rd and 24th A pril, 1854, 176
Pratt, the Vencrable Archdeacon, M. A., The Great Indian Are of Meridian and the Figure of the Earth, 201
Rajendralal Mittra, Babn, Buddhism and Odinism, their Simi- litule; illustrated by extracts from Professor Holmbot's Memoir on the "Traces de Buldhisme en Norwege," $4 ;$
Theobald, W. Esq. Junr., Notes on the distribution of some of the land and firesh-water shelis of India, Part II.. 31:
Thomas, E. Esq., late of the B. C. S., Catalogue of the Coins in the Cabinet of the late Col. Stacey, with the estimated priees attached, 251

J O U R N A L

OF THE

ASIATIC SOCIETY.

No. IV. 1858.

A few remarks on the first fasciculus of Professor Wilson's Sanstrit Dictionary, as "extended and improved" by Dr. Goldstocker, by Fitz-Edwand Hall, M. A.

The first eighty pages of the work in question-all of it that we have yet seen-correspond to a little more than twenty-nine pages of Professor Wilson's dictionary in its second impression. No small portion, indeed, of this increase of matter is only apparent, and due to a more sumptnous style of typography; and yet Dr_{r}. Goldstücker's own additions are by no means inconsiderable. The literature of the Veda, and of Sanskrit law, medicine, philosophy, and rhetoric will doubtless be rendered much easier of acquisition than formerly, if the editor carries his design to the end on the same plan with that of its commencement. The subject of etymology has, also, at last received the attention of a scholar fiun:liar with the terminology of the native grammarians; and, if only as a necessary conseqnence, the arrangement of the significations of homonymes is now noticeably less bewildering than it was of old. In general, there is scarcely a page of the new revision that does not testify to extensive research and to great and conscientious labonr.

On the other hand, Dr. Goldstücker's scheme appears to us to be, in some respects, susceptible of amendment. Why, for instance, the constantly recurring compounds, which even the merest tyro can resolve for himself, when he meets them? The vocabulary of the Sanskrit has, for artificial copiousness, a very imperfect analogue,

No, XCV.-New Semies, Yol. XXViI.
in that of the Greek. In the first place, as to the verbal elements of the latter language, the line has been clearly defined which demarcates what is classical, or legitimately developed, from what is inadmissible; chronology being, for the most part, the criterion. Esperience, moreover, has shown it to be practicable to embrace, within a reasonable compass, all the complex terms that occur in extant Greek authors : and the accession of such terms, from works likely still to be discovered, is contemplated without apprehension. But the case is found to be very different indeed, when we turn to the Sanskrit. For who, here, is not classical, or, at least, is not of weight for his words? The next century may solve the problem; but our own-for which Dr. Goldstücker is working-will not. We propose this consideration with a definite object. Let it be presumed that, by and bye, accidental critics will concur in distinguislıing certain compositions, say to the number of two hundred, as possessed of the characteristic of classicality. Yet, even in these circumstances, we should scarcely expect a lexicographer, after well weighing his functions, to go about to accumulate all the words occurring in them, of the sort to which we refer. Still more unfeasible, and equally supererogatory, would it be, if the entire body of Sanskrit literature were ever thought deserving of lexical treatment, to attempt a complete collection, from it, of vocables of this description. No twenty folios might avail to exhaust them. The assertion is not to be questioned, that the ancient Hindus invented compounds at will; and such, to this day, is the practice of the pandits. No such terms, to our thinking, should ever have place in a dictionary, unless they are technicalities, or unless their acceptation is not at once to be gathered from their factors; the knowledge of one or two facts of Hinduism, and a moderate acquaintance with the grammar, always being postulated in the inspector.*

[^0]We will illustrate our meauing by a single example, and one which we have not gone far to seek. In commou Sanskrit there are some thirty current words for 'earth,' ten for 'man,' four for 'master' or 'lord,' and six verbal suffixes for 'holder,' 'protector,' or 'enjoyer.'* Now, in our own limited reading we have, with only a few exceptions, met with a majority of the words for 'master' and suffixes for 'holder' or 'enjoyer' annexed to each of the words for 'earth;' and so of the synonymes for 'man,' followed by the synonymes for 'lord:' the result being always the same, the equivalent of 'king.' Aud, if any oue of those three hundred and forty allowable regal composites may clain to be represented in a lexicon, why may not all? On the principle with which Dr. Goldstücker has set out, we are to have all, iu process of time; on the condition, possibly, that, in the course of his studies, he obtains proof of their liaving actually been used. The same remark applies to the words for 'sun,' ' moon,' 'Bráhman,' \&c. \&c. Three lines of explanation in the preface would economize many times three pages of quite gratuitous symbols. Our fear of seeing the new edition of Professor Wilson's dictionary overloaded with superfluities has only too good ground, if we may augur from the sample before us. Out of the twenty articles which make up the first page-and it is not a full page-there are six which, in our judgmeut, have no right there: अक्रशिन्, अंश्रकरा, संखभाज्, अंशहर, अंश्रारिन्, अस्जजाल and so onward everywhere. The particular specimens just given were, we are aware, in Dr. Goldstücker's original: but, even though lie may not have been permitted to strike them out, yet we suppose he was under no compulsion to add, iudefinitely, new ones of the same stamp. Hundreds of words beginning with the negative
two or three occasions, but by the consenting use of many, appear in constant alliance, being in this their recognised juxta-position to all intents and purposes a single word, they may then elaim their admission of right." On some Deficiencies in our English Dictionaries, p. 50. Why not exclude, as a rule, all that we do not naturally write without a hyphen?

* We might have gone very much further. There are, in post-vaidika Sanskrit, upwards of sixty words for 'carth.' Sce Professor Williams's English and Sanskrit Dictionary.
prefix \# or सन्, and with the intensive particle घनि, could, without the slightest loss, also be dispensed with. If चतिप्राढधीवावन have a title to presentment, why should any combination whatever of a particle, an adjective, and a substantive, into an epithet, be extruded, when it shews itself?

Nor liave we yet done. The proper names of heroic and mythical personages mentioned up and down the Mahabharata, the Ramayana, the Puránas, \&c., can hardly be less than a hundred thousand. Yet none of them is to be neglected by Dr. Goldstücker, if he adheres to the method, on which he has begun, of pouring a biographical index into a dictionary proper. Half a quarto page and more is assigned to Angiras, two-thirds of a page to Atri, one-third of a page to Agasti, and as much to Agni. Descending to the limits of sober history, the kings of Cashmere, their wives, their daughters, their chamberlains, and their generals, have, each, a niche. Even Adwaitánanda is remembered: "one of the founders of the Vaislnava sect in Bengal. He lived about the end of the fifteenth century." Nor are the shadowy actors in avowed fictions reckoned unworthy of commemoration; such as Anangasená, "the proper name of a courtesan in a drama." That the cloak of indefiniteness is thus thrown about this frail beauty may, by possibility, not be a squandering of generous delicacy : but, at the same time, it is pertinent to enquire why she should here be obtruded on us, even for half-acquaintance. The Tísaradattí of Subandhu introduces us, in one place, to a whole novenary of nymphs, and, in another, to a drawing-room of as many as two and thirty; all of them, on charitable presumption, quite as it was expected they should be, in spite of the somewhat warm tone of their conversation. Though the alphabetical leader of them, Anangalekhá, has, we perceive, eluded Dr. Goldstücker's attentions, he should thank us for intimating to him that just two score still await the courtesy which he cannot now, with any more grace than consistency, deny them. Again, in the Harsha-charita we read of thirty-eight lads and lasses - their names all spelled out at length—who used to assist Bána when he played at royalty. And why, by parity of reason, should Charanákaranka. Kalákaláda, Haranika, aud the rest be forgotten? The S^{\prime} ankara-dig-rijaya likewise contains some hundreds of proper
names; and it is no sufficient reason to reject them, that they belonged mainly to misbelievers. To say nothing so special of the other divinities, the spots held sacred to S'iva alone are all but innumerable; and so are the phalli which bear separate designations. Once more, the eighty or ninety Sahasra-námas of themselves furnish as many thousand accredited epithets of gods and goddesses. Why should a single one of them be slighted?

Looking still more narrowly into Dr. Goldstücker's undertaking, it appears, in fact, to wear the pretensions of a veritable eucyclopædia; bibliography and geography, no less than biograpliy, constituting a component part of his comprehensive enterprise.* Upanishads, sections of the Veda, apocryplaal hymns, the Atri-sanhitú, the Adbhuta-rámáyana, and the Anarghya-ríghava of Murári, all have articles. As the number of distinct Sanskrit works in existeuce is, probably, not less than ten thousand, a mere list of them, be it ever so meagre of details, would alone take up a volume.

It must be obvious, by this time, that the system on which the dictionary of Professor Wilson is undergoing reconstruction involves, in copious proportion, many specialties that are altogether misplaced. The new edition, which aiming at much more than is attempted in any ratioually digested lexicon of Latin or Greek, yet falls short of their standard in, at all events, one most essential particular. We mean, in its citing no authorities. \dagger On countless

[^1]occasions have we gone back from Professor Wilson's second edition, which likewise gives none, to the first, where they are often noted, and have thus obtained a clue by which to satisfy our misgivings. And what student of the Sanskrit does not do so constantly? Who, above all in the infancy of our knowledge of the Sanskrit, will not insist upon some better warrant for what he accepts, than a simple implied dixit magister? In the present instance, a want of space can scarcely be received as an apology for the defect here indicated; for space in all abundance might have been secured by sacrificing but a small fraction of what we have designated as intrusive. The present observations are written without an opportunity of inspecting the thesaurus of Messrs. Böhtlingk and Roth. It is to be loped that the procedure adopted in it, as concerns the adducing of authorities, is more scholastic than that of Dr. Goldstücker. As for the English of the sheets before us, considering that they were printed in Germany, its correctness is highly commendable. Nor are such errors as meet the ere of a kind to occasion perplexity. The principal that we have noticed are "a pumplin born out of season," a woman who "has born him children," "hypothenuse," "neutre," "filtre," "slirewed," "ennuque," and "different than." The system of romanization is not uniform throughout: for example, "dwandwa" and "dvandva," "ahankára" and "ahamkara," " manvantara," and " sarwakarman." " स्यपाल" is a mistake* for अजापाल,'

It is high time, on other grounds, that the superficial but pretentious work here glanced at, should receive a thorough exposure at the hands of some such man as Dr. Trench. Before Icarning English himself, Dr. Webster undertook to teach it to others. Here is a sample. "Feel this piece of silk, or feel of it." We could easily bring forward a hundred other proofs of ignorance as gross as this. A Yankeeism, however, was, to Dr. Webster, even when he knew it for such, no solecism. Are Englishman who confide in his awards generally aware of this fact?

* एकद्वा वत्मरे प्राप्रे अज्रजापालो न्टपात्मजः।
 ब्चयेत्य्याधिपतिः স्योमान् शक्रतुत्यपर।क्रमः॥ अप्टोत्तरफ्तब्याधीनाः क्रत्वा ररच च। सपाद्लचं जोवन्ति प्रजार्सर्मन् महोपते।।

Revá-mâhálmya, 25th chapter.

This secms to mean that Ajápála, king of Ayodhyá, being aflicted with one hundred and eight bodily ailments, relicved himself by turning them into she-
and " चध्यारेपन" for "ज्यध्येरेपएल." We should, farther, write 'Brihaspati' for "Vrihaspati," 'अंशबाए' for " संख़ाएा" '尹्न्तोब' for

 "Bralmman" also.

How far Dr. Goldstücker lias consulted the native vocabularies is left pretty mnch to conjecture. Many compilations of this kind, unknown to Professor Wilson, could be procured, in this country, without difficulty; and probably not one of them, however insignificant or unoriginal, would be without value. Such as have fallen, as it were spontaneously, in the way of the writer of these lines, are here enumerated.
1.-The Amara-Kos'a-vivriti, by Lingaya Vangala, commonly called Lingam Bhatta. The author is said to have lived in the south. A commentary on Amara.
2.-The Budha-manohara, by Mahádeva, surnamed the Vedántin. Another commentary on the Amara-Kos'a. Imperfect, so far as seen.
3.-The Nána-ratníkara, by Koï Deva.
4.-The Níma-sangraha-málá, by Appayya Díkshita-not Árya Díkshita.
5.-The $S^{\prime} a b d a-p r a k a \prime s a$, digested at the instance of some Muhammadan of note, whom the anthor styles "Klána Nṛipati." It is a dictionary of homonymes. The only MS. Which we know of is defective. It was copied in the Samvat year 15.5.
6.-The $S^{\prime} a b d a-p r a b h e d a$, by Mahes'wara. This is a work of small extent, on words variously written, and is in verse. It is not to be confounded with a section of like character in the Vis'wa-prakás'a, which likewise has a Mahes'wara for its author.
7.-The Nénártha-kos'a, by S'ás'wata.
8.-The Nánártha-ratna-tilaka, perhaps by Mahípa. It was composed in the year 1430, of an unspecified era.
9.-The Lakshmínivásábhidhána, by S'ivaráma Tripáṭhin, the scho-
goats, which he nourished. Whatever the absurdity of the story, it has its worth, to the maker of a mythological dictionary, in determining the correctness of a long syllable as against a short one. That the text is not depraved is presumed.
liast on the Tísavadattá. This is a collection of the Onadiderivatives, with definitions. It is said to have elicited a volume of annotations.
10.-The Gana-nighantu, by Chandrachandana.
11.-The Madana-vinoda-nighantu, by Madana Pála. It was written before the middle of the fifteeuth centurs. Like the last, it is concerned with the materia medica.
12.-The S'iva-prakás'a, by S'ivadatta, son of Karpuríya Chaturbhuja. The author annotates his own work, which bears date in the year 1599 of S^{\prime} aliváhana. In subject, it is like the last.
13.-The Dravya-ratnákara-nighañtu, possibly by an anonymous author. It cites the S'iva-prakis' ${ }^{\prime}$. This, too, is medical. The sole MS. which has been consulted is incomplete.
14. -The Rája-vallabha, by Náráyanadása. It treats of officinal substances. It has been printed at least twice, with a Bengalí translation.

Public Inscriptions at Lahore.-By Henry Cope, Esq.
Hureeke via Umritsur, 22nd March, 1858. The Secretary of the Asiatic Society, Calcutta.

Sir,-Looking over some of my papers, I found copies of all the inscriptions in existence on the public buildings of Lahore, which had been carefully taken under my directions during my residence there, aud as I believe they have not been published, and it is desirable to preserve all available records of the kind, I do myself the honor to forward them for publication in the Journal of your Society, if you think them worthy of the houor.

I have added a brief memoir of the several buildings from which they are taken.

> I have the honor to be, Sir, Your Obedient Servant, Henry Cope.

No. 1.-Motee Mundur.

(Persian Inscription.)

Translation-Completed in the twelfth year of the reign of the emperor, (the shadow of God, a Solomon in equity) Noorwooddeen, Jehángeer Pádsháh, son of Jehal-ood-deeu Akbar Pádsháh Gházee, A. H. 1020, under the superintendence of the least of his lowest slaves, Soondur Khan.

The palaec, or fort of Lahore, was commenced by the magnificent Akbar, and many elegant fragments of the style, peculiar to his age, were to be seen before the barbarous improvemcuts of an executive engineer demolished or defuced what the Sikhs had left when they became masters of Lahore. The design of Akbar was carried out by his son, and we may reasonably consider the date of the completion of the Motee Mundur, formerly Motee Musjeed, as the date of the completion of the palace. [t corresponds with the year of our Lord 1614. Jehángeer made Lahore his capital for many ycars. He died in the Beembur hills; his remains were conveyed by Noor Jehan to Lahore, opposite to which at Shadera on the right bank of the Ravee, she raised the splendid mausoleum that still attracts numerous admiring visitors. (I have not given the inscription on Jehángeer's tomb, as it is recorded in the Asiatic Register by an English officer, name not given, who visited Lahore in 1808, and wrote a most interesting account of the town and of the Court of Runjeet Singh. He travelled from Hurdwar in the train of one of the Maharaja's wives).

The Motee Mundur was the "private chapel" of the palace, and used as such, till liunjeet Singh began to grow rieh, when he selected it as a suitable place for the staring of his wealth in gold, silver and jewels. It is believed at one time to have contained treasure to the amount of two millions stcrling. It is small, has been, since it was converted into a Treasury, surrounded by a strong wall, and has continued to do the duty imposed on it by the Sikh sovereign, ever since annexation. It boasts of the most beautifully chaste marble dome on any Muhammedan building I have ever seen, deeply scored with the marks of balls fired during the Sikh troubles, after the Máhárájah's death, from the Minars of the imperial mosque.

No. 2.-Hatipaur Gate of the Palace.
 (Persian Inscription.)

Translation.-The ling, a Jumsheed in dignity, a Solomon in reputation, whose court is in the serenth heaven, whose noble standard waves above the region of the sun, a second Sahib Kiran, "Sháh Jehán," who iu justice and liberality surpasses Nousheerwán and Fureedoon,

Ordered a (Royal?) tower to be erected, which in height should be berond measurement and conceptiou, like unto the highest heaven.

Iu brightness, loftiness, and excellence such a tower never has been, and never will be seen under the sky. After its completion his sincere slare and pious disciple Abdool-Kareem, comprised the year of its erection in the following couplet:-

Like the empire of this all-powerful monarch who has an army equal to that of Jumsheed,

May this propitious and lofty tower ever remain free from injury.
(The date thus illuminated is the 1041st year of the Hijra, correspondiug with A. D. 1631).

It would appear, from the abore, that Sháh Jehán added a tower at the north-west angle of the palace, which, unless the "sincere slave" wrote in an uusually hyperbolic style even for a servant of the "king of kings" has entirely disappeared. The iuscription, may, however, allude to the Sheesh Muhul with which the gate communicated by a tramp coustructed for the use of the elephauts who conreyed the ladies of the Harem to and from their apartments. The Sheesh Muhul is in the Sumun Bourj (Jasmine tower) certaiuly the most conspicuous part of the palace, and its decorations partake more of the strle prevalent iu the time of Slaálı Jehán than those introduced by Alibar or Jelángeer.

> No. 3.-The Impertar or Badshahee Mosque.
> (Persian Inscription.)

Trasslation.-This uosque of Ab-ool-zuffur Mohee-ood-deen Mahomed Alumgeer Pálsháh, was fiuished in the Jear of the Hijra 1084, under the superintendence of the humblest of his slaves Fidáee Kháu, Kok:ah.

Tradition ascribes a much older date to this edifice, built by the emperor Aurungzeb in A. D. 1673, duriug one of the few visits
he paid the Punjab. It differs from edifices of the kind by laving four minars of lofty proportions at each corner of the spacious quadrangle, at the restern extremity of which it stands, instead of two on the northern and southern walls, as in the Jumma Musjid of Delhi which it otherwise resembles. The gateway on the eastern side of the quadrangle now stands out isolated in handsome relief at the top of a noble flight of steps, facing the western entrance of the fort; prudential motives having removed the cloistering on either side so as to leave the terrace open to sight from the fort walls. The mosque served, for upwards of forty and odd years, as a magazine both to Runjeet Singh and the British Government, but the ordnance stores have, within the last three years, been removed iuto the fort, and the mosque restored to the Musalmáns of Lahore. Their gratitude might have assumed a painfully practical shape in 1857, had less vigorous councils prevailed than those which, on the 13th May in that year, saved the Punjab from an insurrection and a mutiny.

> No. 4.-The Mosque of Wuzeer Kilan. (Persian Inscription.)

Translation.-Completed during the reign of Uboo'l-Moozuffur the second, Sahibi Kiran Sháh Jeháu Bádsháh Gházee.

This sacred temple was founded by his devoted follower and esteemed disciple and old servant Wuzeer Khau, 1044, Hijra, A. D. 1634 .

This is one of the most elegant buildings of Lahore, ornamented throughout in that beautiful tesselated style which the architects of those days borrowed from the Chinese (workmen were brought across the Himalaya to give it the true " Porcelaiu" character) and which the men of the present day canuot even imitate, much less equal. It has suffered very little at the hauds of the followers of Nanuk, whose intolerance should have taught patience at least to the Nahomedan, though they desecrated its courts, and its pools by killing swiue and sprinkling the walls with their blood.
No. 5.-A smali tesselated Mosque neartie Moociee Gate.

(Persian Inscription.)

Translation.-Zuhoor Bukhsh laid the foundation of this mosque, Mahomed Sálih completed it, A. H. 1072, (A. D. 1661).

Neither the names of Zuhoor Bukhsh or Mahomed Sálih are known to fame, nor recorded in history. The mosque is known as the "Cheeneeán-walee Musjeed."

> No. 6. -The Golden or Tiláee Mosque.
> (Persian Inscription.)

Translation. -Founder of this mosque Nujwaree Khan. (No date).

This building has been made much more of by travellers than it deserves. It is small, advantageously situated on a high terrace at the bifurcation of two streets, but so surrounded by high houses that it can only be seen from a distance. Attached to it is a curious bale of great depth, whence the best water in the town is procurable.

Henry Cope.
Hureeke vita Umritsur, 22nd March, 1858.

> No. 1.-Motee Mundur.

No. 2.-Inscription on Hatipaur gate of tile Palace.
تاريخ بردروازغ هاتهي پور
 ثانيماحبقران شالاجهان كزعدلوجون نيستختش نوشيوروان مانندو'فريدون هوال
 درصفا ورفعت و لطف برجي بندها يكدل مورِه معتقد عبدالُكيُم

No. 3.-Inscripfion on the Imperial Mosque.

 No. 4.-Wuzeer Khan's Mosque.
تاريخ مسـجـد وزيبر خان

* The metre of this line is defective, - a word is wanting before برجي -EDS.

 سim
No. 5.-A small Mosque near Moochee Durwaza.
تاريخ مسبید

No. 6.-Soneree Musjeed.
مسجبد طالكئي

Notes on the distribution of some of the land and freshwater shells of India: Part II.-By W. Theobald, Junr.

Birmah and the Tenasserim Provinces.
(Continued from page 25џ).
Freshwater Shells.
Order. Prosobrancmita.
Family. Melaniade.
Melania. Lan.

1. M. variabilis, Bens.-Birmah and Tenasserim prorinces, passim. A very large and fine variety occurs in the 'lenasserim river and is eaten by the Karens. A decollated specimen of four whirls measures 2.40 by 1.05 .

A sharp pointed smooth variety is net with at Noung-ben-ziek, on the Irawadi noar Prome which measures 2.50 by 0.86 , number of whirls 10 .
2. M. lirata, B.-Birmah and Tenasserim provinces, passim. This shell usually occurs of a small size in the 'Tenasserim valley. A very large variety is found in Pegu prominently studded with tubercles, length about 2.25, but I lave no specimen to refer to Usual size of the common variety 0.90 by 0.45 .
3. M. tuberculata, Mull.-Small and poor. A specimen from Thaiet-mio measures 0.90 0.26. A Bombay specimen 1.40 0.41.
4. M. spinulosa, B.-Tenasserim river. Very small and rare.
5. M. Jugicostis,* B.-Tenasserim river, rare. A doubtful species. Paludomus.
6. P. Regulata,* B.-Common in marshy places and streams near Prome and Thaiet-mio. This is a sharp pointed shell, having little resemblance to the typical species of the genus.
7. P. labiosa,* B.-A small species tolerably abundant in the Tenasserim valley in running streams and the head waters of Tavoy Province.
8. P. ornata,* B.--Prome and the neighbourhood. Not a plentiful species.

> Family, Litominide. Stenothyra. B.
9. S. Monilifera, B.-Mergui. In met ditches. Assiminea. Leach.
10. A. Francesiæ, Gray.-Maulmein, common.

> Family. Paludinide.

Paludina.
11. P. Bengalensis, Lam. Prome. Rangoon. Very common, and fine. A dark ferruginous stained variety is not rare at Rangoon. The Birmese shells, however, do not equal some Bengal specimens. A large specimen measuring 1.44 by 1.05 , whilst a specimen from Benares measures 2.05 by 1.40 .
12. P. Crassa, Hutton.-Thaiet-mio, rare and small.
13. P. Melanostoma.-Henzada. Rangoon. Common. Bithinia. Gray.
14. B. Cerameopoma, B.-Ava, (procured by Mr. Oldham). Maulmein.
15. B. pulchella (?)-Maulmein. Amphellaria. Lam.
16. A. Globosa, Swain.-Prome, very common. Maulmein. Taroy. Family. Neritides.

Neritina. Lam.
17. N. Humeralis,* B.-Salmeen river, within the tideway-of the trpe of N . reticularis.

Note.-New speeies deseribed by Benson marked thus. *
18. N. Cryptospira,* B. Tenasserim river. This little species occurs abundantly ou stones in rapids just above the tideway.
19. N. Fuliginosa,* n. s. milii.-Testâ neritineformi, subglobosî, spirâ minimâ; colore luteo-flavescente rubro reticulatâ ; intus flaves-cente-pallida; aliquando cærulescente ; non raro fasciis duobus cincta in aperturâ faciliıs visis. Epidermide plerumquenigro colore, extraneo fucato; semipolita, operculo pallide aurantiaco, margine anteriore rubro. Longitudinis 0.40 . Habitat in regno Burmanorum proper urbem Amrapoora sive Ava dictam. Teste, T. Oldham.

> Order. Pulmonifera.
> Family. Limneide.
> Limnoca. Lam.
20. S. Succineus, Desh.-Prome, common.

Planorbis. Miull.
21. P. Coromandelicus, Fab.-Prome aud Fiangoon, de. Common but not large.

> Class. Conciitfera. Family. Arcade. Scaphula. B.
22. S. Pinna,* B.-Tenasserim river within the tideway but in freshwater. This species appears to have been previously noticed and recorded as a Dreinnia in Mason's work on the Birmese Fauna, till I forwarded specimens to Mr. Benson, who described the species in the annals of Natural History for 1856. It adheres firmly by means of a short byssus to porous rocks (Laterite) in the cavities of which it nestles.

Family. Unionide.
 Unio. Retr.

23. U. cæruleus, Len.-Thaiet-mio in small streams and feeders of the Irawadi, not large or common.
24. U. crispisulcatus,* B.-Very common in small streams near Thaiet-mio, where it is eaten by the Birmese, 1.96-1.23.
25. U. Pugio,* B. Irawadi river near Ava. Procured by Mr. Oldham.
26. U. marginalis, Lam.?-An allied species, if not a variety of this shell occurs near Prome, 4.30-2.00.
27. U. Parma,* B.-Common in the Irawadi and Tenasserim rivers, $2.56-1.90$.
28. U. scutum,* B. -Common in the Tenasserim river, $3.90-2.05$.

Family. Cycladida.
Corbicula. Muhlf.
29. C. Arata,* B.-Common in the Tenasserim river.

Family. Solenide.

Novaculina. Benson.

30. N. Gangetica, B.-Teuasserim river. This shell ocenrs in great quantities in mud banks within the tideway, but in freshwater, and is collected for food. My largest specimen measures 2.03 -0.88 .

The above is very far from being a complete list of the fluviatile shells of the Provinces, but is given in default of a better. Many species of shells are probably jet to be found, and I have a single valve of a large species from the Bangong Nulla near Thaiet-mio, which stream deserves attention.

Mhow, June 9th, 1857.

Darjiling and the Kifasia Hills.

In endeavouring to contribute (from personal observation as far as practicable) to our knowledge of the distribution of land shells in India, I think it will prove convenient, not to say necessary, to divide India proper into three distinct regions, viz. the Himalayan, the Central and the Southern region--neither do I think these divisions will be found to be mere arbitrary ones, for though a few species may be common to all and a still larger percentage to any two, yet each is distinguished by a sufficient number of characteristic forms, to render such an arrangement not one of mere convenience, but essentially a natural one. In like manner Ceylon and the Tenasserim Provinces form tro very natural divisions, and though I could wish that this subject had been taken up by one having greater experience than myself, yet, as a beginning, I venture to offer in the present paper, the results of my observations within the area which has fallen bencath my examination.

The Ilimalayan region has ouly been partly esamined by me, and I shall therefore confine myself to its eastern portion, awailing myself to some extent of the observations of my colleague Mr. W. Blanford, who obtained, when at Darjiling, several shells which had escaped my notice.

The central region commencing in the plains below the lower slopes of the hills, embraces the entire area outside the hills, drained by the Ganges and Máhánádi to the east, the Nurbrdda and Taptee to the west, aud the Indus and its tributaries to the north_ west, a large and important area, but of a richuess by $n o$ means commensurate with its extent.

Of the southern region, I know nothing personally, but the known shells of that quarter sufficiently support its claiin to rank as an iudependent division.

Kilasia Mills.

The shells which are bere given have mostly been named and described by Mr. Benson, satve in one or two instances, though many names are still merely manuscript ones, but for practical purposes I think a mere description unaccompanied by a figure of the shell is of little use in discriminating between nearly allied forms, though required by custom to establish the currency of the name applicd to a new species.

Cyclostomide.

Pterocyclos, Benson.
No. 1. P. Hispidus, Pcarson.-Teria ghât at the foot of the hills on the road to Cherra. 'ilhis handsome species is very abundant on rocks at the limestone quarries a little above Teria ghat, where a dwarf variety also occur's sparingly. Diameter over peristome, 1.20.

$$
\text { Ditto in dwarf, } \quad 0.70
$$

2. P. Albersi, Pf.-Teria glât. A dwarf variety.

> Cyelophorus, Montront.
3. C. Siamensis, Sow.-Teria ghâl (the quarries). This very handsome species occurs abmemtly. The apex is generally inperfect, probably from falling imoner rocks; as it is a heave shell.
4. C. Pearsoni, B.-Lacat. Very common. Varies in size $190 \quad 1.20$
from - to -
5. C. Zebrinus, B. - Nanclai Poonji on the northern water-shed of the Khasia hills, $92^{\circ} 30^{\prime}$ cast; $25^{\circ} 15^{\prime}$ north. It is by no means an abundant species.
6.* C. Tomotiema, B. Teria ghât, rare. This shell is of the same type as the lirmese U. scissimargo.
7.* C. Pinnulifer, B.-Teria ghât. Not rare, varies from 0.60 to 0.30 .

Leptopoma, Pri.
8.* L. Cybeus, B.-'Ieria ghât, rare. Nanclai, rare. A thin shell of arboreal habits.

Alycceus, Grat.
9.* A. Prosectus, B.-Teria ghât; very common on rocks.
10.* A. Hebes, B.-Teria ghât, not rare.

Diplommatina, Benson.
11.* D. Polypleuris, B.-Nanclai. Not rare on rocks.
12.* D. Diplocheilus, B.-Teria ghât. A short species common on rocks.

Pupina, Vignard.

13. P. Imbricifera. B.-Teria ghât, rare. Found on rocks an decayed trees, but mostly on the latter. The operculum exhibits the spiral structure observable in Cataulus.

Mydrocena, Parrtess.
14. II. Sarrita, B.-Teria ghât. Cherra, Nanclai, common on rocks and amongst moss on trees.

> Helicide.
> Helix, L.
15. H. Plectostoma, B.-'Teria ghât, very common, a large variety is found on limestone rocks, a smaller one on trees, juvenile shells of this species are remarkably lirsute.
16. H. Serula, B.-Teria ghât. Common. A beautiful diaphanous species with sharply chisselled strixe causing a toothed periphery. Reeve's figure convers a poor idea of the shell.
17. II. Delibrata, B.-Teria ghât. Very rare. This shell extends to Birmala and when fine has a hirsute epidermis.
18. II. Tapeina, B.-Teria ghât and along the foot of the hills. This shell chiefly affects Areca palm trees. It is very closely allied to the Birmese II. rotatoria.
19. II. Climacterica, B. -Teria ghât. Not rare. A dwarf variety occurs at Cherra.
20. II. Ccstus, B.-Beueath Cherra. Not very common.
21. II. Dccussata, B.-Teria ghât, rare.
22.* II. Bascunda, B.-Teria ghât, rare.
23.* II. Galea, B.-Teria ghât, rare.
24.* II. Diplodon, B.-Teria ghât, rare.
25.* H. Castra, B.-Teria ghât, rare. A Darjiling species.
26. II. Planiuscula, Hutton.-Cherra, rare.
27.* II. Puellula, B.-Teria ghât, rare.
28. II. Oxytes, B.-Nauchai poonji,* rather common among limestone rocks.
29.* II. Castor, n. s. mihi.-Testâ lenticulari, subdepressâ, vix nmbilicata, acute carinata, confertim striatâ ferrugine-fuscî imfractibus $5 \frac{1}{2}-6$, marnitudinis $1.40-0.60$. Habitat apud Nanclai, in montrbus "Klasia" dictis.

This shell is not common, and I have ouly a barely adult specimen in good couditiou. It closely resembles H. oxytes which it accompanies, and from which it differs in its nearly closed umbilicus, and less ornate sculpture. The keel too is a triffe more acute and divides the body whorl in a symmetrical mauner, from the shell not being so flattened down as H. oxytes. The shell is rather stout and the peristome probably thickened more or less.
30.* H. Pollux, n. s.-Testâ leuticulari, subdepressa vix umbilicata, acute cariuata, tenue striatâ, transluceute, colore stramineo, polita, peristomate acuto anpactibus $5 \frac{1}{2}-6$, magnitudini $1.40-0.55$. Habitat prope 'Teria crlât, ad pedem moutium Khasia dictarum.

This shell is a very distinct species of the same form as the above, from which it differs in sculpture, want of solidity and colour. As far too as I can judge, its habits are arboreal, whilst the last species affects rocks in company with H. oxytes.

A few more helices occurred, of the naninoid type, but not in a satisfactory state for determination, but the hills below the Cherrat plateau offer a tempting ground for future exploration as the richness of the few spots examined near 'leria ghât proves.

[^2]
Streptaxis, Gray.

31.* S. Theobaldi, B.-Nanclai. liare; amougst limestone rocks. Vitrina, Draparnaud.
32. V. Gigas, 13.-Near Teria gbât, but at some elevation, and also at Cherrapuiji, length of a large shell 1.45.
33.* T. Seutella, B.-Teria ghât, rare.
34.* V. Salius, B.-Teria ghât, rare. The animal is a livid plumbeous colour, addicted to limestone rock in the sinous cavities of which it is chiefly to be found. It is very active and when touched, leaps several inches by rapidly twisting and whirling its tail in a very vermiform manner, indeed till this habit is known, it is not easy to secure in the rough places it mostly frequents.

Bulimus, ScopoLr.

35.* B. Polypleuris, B.-A pretty little scalariform species, of which a single specimen only was found at Teria ghât.
36. B. Sylheticus, B. -Not met with by me but included in Mr. Benson's list of Sylhet shells. It is found in the orange tree plantations at Lacat.

Achatina, Lamarck.

37.* 4. Pyramis, B.-Teria ghât. Abundant under leaves and rubbish.
35. A. Crassilabris, B.-Teria ghât, rare.
39. A. Cassiaca, B.-Not found by me but included in Mr. Benson's list.
40. A. - sp. In too poor a state for description.
41. A. - sp. Ditto ditto.
Papa, Limarck.
42.* P. Vara, B.-Nanclai. Very rare.
43. P. Plicidens, B.-Cherra.-Vers common on limestone rocks This is a Western Ilimalayan species.

Clausilia, Draparnaud.
44. C. Loxostoma, B.-Teria glâat. Very common, attached to rocks or stones. This shell differs much in appearance, being sometimes found entire and with clean epidermis, in others covered with green matter and decollated. This difference is the result of situation, those specimens talen from rotten trees and beneath the luose bark being perfect, whilst those attached in exposed situations
to rocks and boughs, being constantly moist for months together and generally with a drop of water pendent from the apex become decollated and covered with a green confervoid coat.
45.* C. Ignota, n. s.-Teria ghât. Rare, my two specimens at present in Mr. Bensou's hands for description, so that the name here given is merely provisional. It is allied to C. cylindrica.
46. C. Bacillun, B.-Nauclai. Very rare. A new species but unfit for description, of the type of C. Insiguis.

The freshwater shells may be dismissed in a few words, the most remarkable of them not being found by me. I allude to Scapula celox, which inhabits some of the streams in Sylhet.

Paludomus Stephanus, B. and P. Conica, Gray, occur at Teria ghât, the former in immense abuudance.

Ampullaria also reaches a large size at Sylhet, one specimen of A. Globosa, measuring 3.45 by 3.18 , the mouth being 2.41 by 1.40 .

A very heavy Calcutta specimen being only 2.43 by 2.28 , and the mouth 1.65 by 1.03 .

A dwarf var. not rare about Calcutta, measures only 1.20 by 1.07 .

Dabjiling.

My present list of Darjiling shells, will, I regret to say, be found very meagre, owing to more than one cause over which I have no control. Siace my visit to Darjiling, a large addition to previously known species, was made by Mr. W. Blanford, who has seut his unique specimens to England. Of the others, he has liberally furnished me with specimens, some of the most interesting of which I had described for insertion in the present paper, but at the last hour failed to obtain the donor's permission for so doing, the present list therefore embraces ouly published species, though it is to be hoped Mr. Blanford will himself soou remedy this, and adopt the course which his prohibition has debarred me from.

Cyclostomide.
Cyclophorus.
C. Himalayanus, P.-Not common.
C. Trybliam, B.-Rare.
C. Aurora, B.-Common. 'lhis shell varies very greatly in size
as the following measurements shew, $1.95-1.30$ to $1.20-0.50$, and smaller specimens than this last are not rare.
C. Phoenotopicus, B.-A small species of the pterocycloid group of Cyclophorus.

Megalomastoma.
M. Funiculatum, B.-Tolerably abundant at Darjiling on mossy banks.
M. (?) n. s.-A small pointed scalariform species with strong costulate striation.

Alycaus.
A. Urmula, B.
A. Constrictus, B.
A. Otiphorus, B.
A. Stylifer B.
A. n. s.

Streptanlus. \mathcal{B}.
S. Blanfordi, B.

Diplommatina.
D. Pacluychcitus, B.
D. sp.

Heficide.
Bulimus.
B. SikZimmensis, Reeve. Rare.
B. (small sp.)

Achatina.
A. Tenuispira, B.
d. Crassula, B.

Clausilia.
C. $10 s, 1 \mathrm{~B}$.
Pupa.
P. (sp.)
$V .(s p$.

ILelix.

II. Cyclophlax, 13.
II. Tugurium, B.-Rare.
II. Castra, B.-Rare.
II. Orobia, B.-Rare.
II. Lubrica, B.
H. IIuttoni, B.

IL. Rorida, B.-Common on shrubs in Darjifing during early morning.
II. Climacterica, B.
II. Plectostoma, B.

To this a dozen may safely be added to complete the list, of shells which are undescribed and of which I have not scen specimens.

Calcutta, 30th August, 1858.

Account of a Cyclonc in the Andaman Sca, on the 9th and 10th April, 1858.- Ey G. von Liebia, M. D.

The Friend of India of the 13th May publishes the following notice: "The Maulmain Advcrtiser records a severe gale in the Bay of Bengal on the 9 th and 10 th of A pril and two preceding days. The shipping suffered considerable danage and the Rrig Dido bound from Rangoon to Penang foundered at Sea; one man was saved, \&ce. \&c."

Having been in the Andaman Sea about that time, doing duty on board the Honorable East India Company's Steam Frigate Semira. mis, Capt. Campbell, whieh had left Calcutta on the 4th of March for the Andaman 1slands and Maulnain, I had an opportunity of collecting some information with regard to this gale, a well defined Cyclone, the publication of which I think will be of importance for the navigation of the Andaman Sea. I consider the publication of this account the more in the light of a duty, as we have had only lately to regret the loss of Mr. Piddington, who has for a number of years conferred so much benefit on the navigation of the Indian seas by collecting facts illustrative of the laws of circular storms
and by popularising knowledge by which to avoid their dangers. I have no doubt that he would, with his large experience, have done better justice to the subject than I can hope to do, and I am happy to avail myself of this opportunity to pay tribute to his memory.

The Cyclone of the 9th and 10th April deserves particular attontion as it followed a direction differing from the common course of Cycloues in the Bay of Beugal, or in the tropical latitudes geuerally on the uorthern hemisphere. This course is usually from the south of east to the north of west, but the Cyclone of the 9th and 10th travelled from the south of west to the north of east-(a direction which we are accustomed to see the Cyclones assume only after they have passed the northern tropic)-passing from the north end of the Audumans to the main land and touching the coast a little south-east of Cape Negrais.

In drawing up this account, I am in a great measure indebted to the kind assistance of Capt. Campbell, I. N., whose experience has guided me where I was deficient in nautical knowledge.

The Semiramis left Port Blair ($11^{\circ} 4 \mathrm{l}^{\prime}$ north latitude, $92^{\circ} 45^{\prime}$ east longitude) ou the 7 th of April for Maulnain. The wind had been blowing from E. N. E., E., and E. S. E. for the whole fortnight previous to our departure, conveying large summer clouds across the Island. On the Gth, the clouds thickened with much lightning, and occasional showers fell, and on the morning of the 7th, the sky was overeast and rainy. Soon after we lad left Port Blair on the 7 th, the wind turned to south-east with rain and squalls and lightning to southward, but on the morning of the 8th had changed to the north-east, the weather clearing a little. During the day it went to the north and west of north and in the night returned to north-east, from which quarter it continued until we approached Amherst, where we anchored at 1 p . м. on the 9 th. Here the wind chauged through E. to S. E. during the afternoon of the 9th, the squally weather continuiug. During the night with much lightning to the southeast and south the wind increased considerably in force (from 4 to 8 and 9) turning to S. and blowing a gale on the forenoon of the 10th with occasional squalls of rain, but no increase of clouds or unusual electric phenomena during the day, blue patches of the sky being oceasionally visible.

The Semiramis weighed anchor at noon and proceeded up the river to Manlmain, where she arrived at 2 p. мr. The wind after midday gradually changed to S . W. diminishing in force. The readings of the barometers, having followed a most regular coursc since the day we had left Calcutta, showed on the morning of the 10th a remarkable irregularity. The barometrical curve of the 9 th had still been regular, risiug from 6 o'clock to 9 and 10 , then falling till 4 aud 5 f. M. and risiug agaiu in the evening. On the 10th the Mercury rose only till 8 o'clock, when it commenced to fall, bcing at 10 o'clock much lower than it might have been expected, and nearly 0.200 inches lower than the day before at the same hour. (For the observations ou board the Semiramis as well as abstracts from the logs of the ships mentioned hereafter, vide Appendix.)

The mean barometrical pressure on the 10th (mean of hours $8 \mathrm{~A} . \mathrm{m}$. and $4 \mathrm{p} . \mathrm{m}$.$) was 0.15$ inches lower than the mean of the 9 th . On the 11th, the barometer rose again, nearly to its former height and returned to its regular course. The mean temperatures of both days (9 th and loth) were about the same, but with a greater variation on the 10th.

The concurrence of the low and irregular barometric pressure and the increasing force of the wind made it very probable that a Cyclone was passing near, of which we felt the extreme edge, the changes of the wind being slow and the general disturbauce in the atmosphere not great. The change in the directiou of the wind having taken place from S. E. by S. to S. W. would indicate a positiou iu the right semicircle of the Cycloue, its centre having been nearest on the forenoon of the 10th. A few days after our arrival at Mauhain, we obtained the confirmation of this conjecture.

Ou the 12th, the survey brig Mutlah, Lt. Sweney, I. N. came in, having becn obliged to quit her station opposite the middle Andaman in consequence of bad weather, on the Sth April. The Mutlahb had the first indication of bad weather on the 7 th wheu at anchor iu Diligent Straits (vide Appendix). The wind which had before beeu blowiug E. N. E. and E. S. E. the same as at Port Blair, changed on the 7 th to S . E. with squalls and rain in the evening. It will be remembered that the Semiramis experienced the sane change ou the same day and iu about the same lougitude or rather
more to the eastrard but further south. On the 8th the gale increased, the wiud veering to S. S. E. The Brig now left her auchorage and ran before the gale, standing N. E., the force of the wind still increasing aud blowing furiously on the forenoon of the 9th from S . On the 10 th the force of the gale moderated, the wind veering to S. S. W. and S. W., the Brig ruming for the Manlmain river. The barometer contiuued to fall from the 7 th, aud was lowest on the 9th.

On the 10 th it rose again. According to the veering of the wind the ALutlah was also in the right semicircle of the Cyclone and by the barometer nearest to its centre on the 9th, the centre bearing west. Judging from the violence of the weather she experienced, she must have approached it much nearer than the Semiramis. She met the gale two days earlier than the Semiramis, and further west.

Although the observations of the two Ships coincided so far, it was a strauge circumstance that in these latitudes (15° to $17^{\circ} \mathrm{N}$.) a Crclone should travel in the direction iudicated, namely, from west to east, the common course of Cyclones in these latitudes being from east to west, and confirmation was still required of the nature of the storm having been that of a Cyclone.

This was given by the Mail Steamer, Cape of Good Hope, which experienced bad weather on the 9th, passing along the Arracan Coast from Akyab to Rangoon. With her, the Cycloue set in from the east about noon near Cheduba, the wind increasing and veering round to N. E. and the sympiesometer falling. The violence of the storm was greatest and the sympiesometer lowest about and after miduight, wind N . When she was about forty miles N. W. of Cape Negrais. After this the wind changed to N. W. the storm moderated and ceased at noon on the 10th. The Ship arrived at Rangoou on the eveuing of the 11 th with fine weather.

The wind having commenced with E. veering by N. to W., the Cape of Good Hope was evidently in the left semicircle of the Cyclone, and nearest its centre about miduight, on the 9 th the centre bearing E .

Ou the morning of the 9 th, when approaching Amberst we had sighted the ship Alma on her way from Amberst to Port Blair. She passed us with N. E. wind which she kept till late in the afternoon.

At 9 p. м. a squall from S. E. blew away her main top sail ; at midnight the wind came from S. with terrific squalls, thunder and lightning, the gale blowing till noon on the 10th, when it moderated with S. W. On the 11th the weather was fair with light airs from the westward. The Alma in the right semicircle of the Cyclone had been driven N. Westward into the gulf of Martaban, where she had the worst of the storm at midnight from the 9 th to the 10th, the centre bearing west, at a time when Amherst partook only of the changes of the wind without experiencing the violence of the gale. From the observations of the Alma and the Cape of Good Hope it is possible to fix the centre of the Cyclone at miduight on the 9 th. Judging from the great violence of the gale at Port Dalhousie where the storm is said to have been worst, it was about forty or sixty miles E. N. E. off Cape Negrais on the main land (vide Charts).

The Honorable East India Company's Steaner Coromandel bound for Madras, left Rangoon on the 8th with N. and N. E. mind and rain. She kept the usual course and in 15 latitude, A. M. on the 9th she steamed westward. The Cyclone commenced at 11 A .3. on the 9 th, the wind changing from N. to S. E. barometer 29.96 . She soou changed her course to W. by N. and W. N. W., the wind veering to E.S. E. at 1 p. m. increasing fast and barometer falling. At 4 p. m. the Ship was a little north of Preparis Island, the wind had suddenly changed to N. N. E. increasing to a heavy Cyclone with thunder and lightning and heavy rain. The barometer falling rapidly, but the argency of the occasion not leaving time to record the observations.

The Ship now hove to with her head to E. ; much damage was received (vide Appendix). 'The gale continued heayy, the wind veering to N. W. antil 7 p. m. when an observation of the barometer could again be recorded, which was very low 2920 . After that hour the weather moderated, the wind drawing to the mestrard and the barometer continued rising. It was at 10 p. мr., 29.49. From the great violence of the storm experienced about 4 P . M. the sudden change of the wind to the northward, and the rapid as well as great fall of the barometer, the Coromandel must have been close to the centre of the Cycione about that time.

The Cyclone had struck the Ship first with S. E. the same as was the case with the Mutlah and Alma, but at a later date and to the east of the former, and earlier and to the west of the latter, the Coromandel being in a position between these tro Ships. This confirms the view already taken of the Cyclone passing from S . W. to N. E. The Coromandel instead of passing through the right semicircle of the Cyclone, as the other ships, must have steered right across its tract into the left semicircle, narrowly escaping the centre itself. That she was closer to the centre than any of the other ships is proved, as already mentioned, by the rapid changes of the wind between 1 p. m. and 7 p. yr. from E. S. E. to N. W. The observations of the Coromandel allow us to fix the centre to abont 20 or 40 miles north of Preparis Island at 4 p. Mr. on the 9th, and its passage to the main land between that hour and midnight is shown by its position at midnight which we have fixed from the observations of the Cape of Good Hope and the Alma.

We are now also enabled to trace the position of the centre at noon on the 9 th. The Coromandel had at that time the mind from S. E., the centre bearing S. W. At the same hour the Mutlah had the wind from S. the centre bearing west. Proceeding from the positions of the two ships at noon on the 9th these bearings unite in fixing the centre to about ten miles north of the little Cocos Island (vide charts.) This agrees well with the observations of the Cape, the wind about noon near Chiduba being east.

It now remains to trace the positions of the centre at noon on the 10th. At that hour, the Alma in the Gulf of Martaban, very near the coast had S. W. when the Cape of Good Hope about 40 miles S. west of Cape Negrais had N. W. The bearings of the centre from these directions of the wind point to a position about 40 or 60 mites to the North of Rangoon, on the main land. This is further confirmed by the change of the wind about noon at Amherst from S. to S. W., I have delineated the tracks of the ships and that of the storm on the 9 th and 10th on the two accompanying charts.

By information received, the storm was not felt at Alsyab, but its widest circle abont noon on the 9th tonched Chiduba Island and shortly after that hour Amherst, where I take the change of the
wind to S. E. and its subsequeut veering by S. to S. W. as sufficient evidence. Starting from the position fixed for the centre at noon on the 9th near the Cocos Islands, this would give it a radius of about 300 miles. On the 8 th when it commeuced, probably a little W. of the Andamans, it was felt at Port Blair.

Having fixed the centre for noon of the 9 th for the midnight following and for noon of the 10th, we are enabled to form a conclusion as to its rate of travelling and the difference of its speed on the surface of the Sea and on the land. In the period from noon to midnight on the 9 th, the ceutre accomplished a distance of about $160-170$ mites and in the 12 hours following about $90-100$ miles. Accordingly it travelled at the rate of abont 14 miles an hour on the water and of about 8 miles an hour on the land.

The track of the Cyclone does not keep a straight line but is slightly curved, the concavity of the curve pointing to the southeast.

For determining the position of the centre, I have only used suck positions of the ships as could be defined with sufficient approach to their real place, as otherwise the uncertainty of some parts of the ship's tracks and also of the obscrvation of the wind's changes when further removed from the centre, would often lead to error.

To complete the information, I mention that by a letter which Capt. Dicey, Master Attendant at Calcutta, had the kindness to communicate to me, the Cyclone caused considerable damage at Henzadah latitude $17^{\circ} 40^{\prime} \mathrm{N}$. and lougitude $95^{\circ} 15^{\prime} \mathrm{E}$. on the forenoon of the 10th, when its centre passed between that place and Rangoon. The destruction caused at Rangoon was also great, as I conclude from verbal accounts, but it is to be assumed that the violence of the Cyclone must have been considerably lessened by the time it had progressed so far iuland. This would also appear from the small disturbance of the atmosphere experienced at Amherst and Manlmain on the 10th.

It will be iuterestiug to mark the limits of the region in which the Cyclone raged, and the winds that prevailed in these limits before and after it.

The region in which the effects of the storm were felt may be included between the 11th and 19th degrees N. latitude and between
the 92° and $98^{\circ} \mathrm{E}$. longitnde. There is no doubt it must have extended to the west of $92^{\circ} \mathrm{E}$. longitude on the 8 th and 9 th, but, no observations being available, I will not go beyond that limit. In this region the polar current prevailed before the commencement of the gale, as shown by the observations of the Semiramis, Port Blair and Mlutlah before the 7th and of the Alma and Coromandel on the Sth (Amherst and Rangoon, vide Appendix.) On the 7th and 8 th a south-eastern current from the equator first entered the south-western quarter of the region between 93° and 95° latitude. (Semiramis and Mutlah on the 7th) at a time, when in the eastern half the polar current still prevailed (Semiramis, Coromandel and Alma on 8th.) The entrance of the southern current seems to have introduced the atmospheric disturbance, but the rotatory motion was not observed before the 9th and 10th, when the Cyclone had been formed, travelling now from S. W. to N. E. The Arutlali's log makes it probable that the Cyclone took its origin west of the middle Andaman on the 8th.

After the Cyclone had passed, the prevailing winds in the region were westerly, with calms, and later the polar current prevailed again.

To the south-west of the region (latitude $6^{\circ} 10^{\prime}$ longitude $88^{\circ}-90^{\circ}$ ship Edwards) on the 8th and 9th S. westerly winds prevailed, giviug way on the 10th to the polar current.

To the nortl of the region (Dalhousie, Calcutta and Sea and Cape of Good Hope, forenoon of 9 th.) The S. W. sea breeze common to the coast of Bengal and Arracan, prevailed before as well as after the gale (Dalhousie, Calcutta to $16^{\circ} 51^{\prime} \mathrm{N}$. latitude and $92^{\circ} 16^{\prime} \mathrm{E}$. longitude from 7th to 11th.) The log of the Edward shows that the south-eastern current, which ushered in the Cyclone, was confined between very narrow limits, not reaching west of the Andamans. It was on the 7 th probably confined between longitude 92° aud 95° or 96° east longitude.

Appendix.

Memo. from the Log of II. East India Company's Steam Frigate or Semiramis, Capt. Campbelel, and also private Journal.

6th April.

7 а. м. Bar. 29.965	84.00	At Port Blair, sky overcast,	
10	30.030	85.00	wind E. S. E., calm in evening.
12	30.015	85.75	
2 р. м.	29.975	86.25	
4	29.945	86.25	
$\mathbf{6}$		29.925	86.25
8	29.940	85.75	

7th April.	
$6-30$ д. м.	29.910
8	29.935
10	29.970
4 р. м.	29.850
$6-25$	29.850
8	29.910

8th April.

6-30 a. м.	29.350	83.75	At mikn the wid luld
10	30.005	80.75	and then set in from N. E. In
2 p. м.	29.940	81.25	the middle of the day it changed
4	29.940	81.25	from N. E. to the west of N. and
6	29.940	82.00	turned to N. E. in the evening,
8	29.960	81.75	strength $2-4$, raining and overcast all day with some lightning.
	$\begin{aligned} & e, ~ a t ~ \\ & \text { de, } \end{aligned}$		$14^{\circ} 30^{\prime}$ N. by account. $96^{\circ} 10^{\prime} \mathrm{E} .$

9th April.

6-30 A. Mr.	29.975	80.5	During the night wind conti-
9	30.040	80.75	nued N. E. until about 7 A. M.,
10	30.040	81.0	after that hour it turned easterly
12	29.980	81.0	and about noon became S. E.
2 p. M.	29.940	81.5	strength 3-4. At noon we took
4	29.985	81.5	the pilot on board in sight of
6	29.920	81.0	Amherst and anchored at 2 p. m.,
8	29.950	80.5	raining with interruptions all day ; during the night following the 9th, lightning was observed all round, but principally to S. E. and S.

Latitude at noon on 9 th $1 C^{\circ} 4^{\prime} \mathrm{N}$. by account.
Longitude,........... $97^{\circ} 35^{\prime} \mathrm{E}$.
10th April.

$7 \mathrm{~A} . \mathrm{m}$.	29.860	78.00	The wind after midnight of the
8	29.900	78.50	9th changed from S. E. to S. and
10	29.870	80.50	remained so, increasing in strength
11	29.875	81.75	(8-9) till about noon, wheu it
12	29.850	81.00	diminished, the wind gradually
2 р. м.	29.830	84.50	changing in the afternoon to
4	29.505	78.50	S. W., left Auherst at noon and
6	29.815	79.00	auchored Miaulmain about 2
8	29.800	79.00	m., raining with interruptions all day.
11th April			At Maulmain, wind S. W. and calm, clouds from N. W.

MLemo. from the log of the Brig Mutlah, Lt. Sweney, I. N. 7 th April.

Aneroid Temp. At anchor off North Button, Bar.
4 А. м. a. m. $\quad 30.00 \quad 84.5$ man.) Overcast, slight showers,

10
30.02

1 $\begin{array}{lll}1 & & \\ 4 & \text { р. м. } & 29.93 \\ 10 & 29.98\end{array}$ $\begin{array}{ll}1 & \\ \text { 4. м. } & 29.93 \\ 29.98\end{array}$
10 $\begin{array}{ll}1 & \\ \text { 4. м. } & 29.93 \\ 29.98\end{array}$ Diligent Straits (middle Anda-

8th April.

$4 \mathrm{~A} . \mathrm{m}$.	2990	83.25	Gale increasing,incessant rain,
10	29.94	84.00	left the Auchorage to gain the
4 Р. м.	29.87	83.75	open sea, run before the gale,
10	29.90	84.00	standiug to N. E. wind S. S. E.
			the whole day strength 5-8.

9th April.
4 s. M. no obs.

About midnight of Stl, heavy squalls, torrents of rain, course N. E., wind changed to S., at daylight of 9th stood E. by N. to stecr clear of the Cocos and Preparis, and steer out of gale, wind S.

8 a. M. gale increasing, blowing furiously, torrents of rain and high sea, vessel labouring and straining. Noon slightly moderating, wind S. stood E. N. E.

10th April.
4 A. M. no obs.
10 ء. м. 29.93
4 р. м. 29.89
10
$29.7 \pm$

At midnight of 9 th, heavy sea 82 gale, heavy squalls, moderating 82.5 after daylight, wind turuing to 83 S. S. W. and in afternoon to S. W., moderating ; strength of wind during the morning 7-8 and 9, at 4 r. 3. 3.

Rumning for Maulmain river, $\frac{1}{2}$ past l, struck soundings 16 fathoms, sand.

10-30 P. m. anchored in 15 fathoms with Island a head (Calegouk.)

11th April.

4 A. м.	29.88	80.5	Under weigh to Caligouk Is-
10	30.00	81	land 3-4 miles E., wind N. west-
4 p. м.	29.94	82.75	erly, clearing up at noon, sighted
10	30.02	84	Amherst Pagoda.

Remark.
The tempest was worst on the morning of the 9 th.
Memo. from Log of the Mrail Steamer Cape of Good Hope, Capt. Robertson.
9th April.-Proceeding down the coast from Akyab to Rangoon, wind S. W. on the morning of the 9th.

Noon.-Wind E. or E. S. E. threatening appearance, Sympiesometer, 29.95 .

2 р. м.-Off Chiduba Island, wind E., barometer 29.90.
8 p. m.-Wind N. E. gate, sympiesometer falling 29.70.
MFidnight.-About 40 miles N. W. of Cape Negrais, wind N. sympiesometer 29.49, heavy gale, thunder and lightning, squalls and rain, deck furniture carried away.

10th April.-About 50 miles west of Cape Negrais, wind has gradually changed to N. W. sympiesometer commenced to rise.

Noon.-Passed Negrais chamel, wind N. W. moderating.
Remarks.-The gale was most severe shortly alter midnight. It ceased in the afternoon of the 10th. The wind veering to W. N. W. and remaining westerly and N. westerly afterwards. Fine weather on the 11 th, arrived at Rangoon on the 11th at night. At Port Dalhousie, the cyclone had been worst, two ships were lost on the 9th. At Bassein, also great destruction was caused by the cyclone.

I am indebted for this account to the verbal communication by Capt. Robertson.

Memo. from Log of ship Alma, Capt. D. Ritciie from Amherst to Port Blair.
8th April.-At Amherst, a strong breeze from N. W. until about midnitht, when it veered to N. E.

9th April.-Left Amberst at 9 A. m., wind N. E., remained so until night.

9 p. m. - A sudden squall from S. E., blew away the main top sail, it moderated again.

Midnight.-'Tervific squall from S., with thunder and lightning, gale lasted until noon.

10th April.-Noon when it moderated with S. W. course from midnight until noon undecided N . W. or W . The ship drifted until she had only 8 fathoms of water muddy.

11th April.-Gale ceased, wind comiug round to the westward, light airs at noon.

> Latitude $11 \mathrm{th}_{1}$ at noon $15^{\circ} 5^{\prime} \mathrm{N}$.
> Longitude, $96^{\circ} 7^{\prime} \mathrm{E}$.

12th April.-Light airs from the westward, fine weather continned until arrived at Port Blair ou 19th.

I am indebted for this account to the verbal communication of Capt. Ritchie.
'The track of the Alma, as in the chart, was kindly laid down for me by Capt. Campbell, with special regard to drift and local tide currents.

Memo. from the Log of IIonorable East India Company's Steamer Coromandel, Lt. Straduing, I. N.

8th April.-Left Rangoon, wind North, rain.
4 р. m.-Left langoon Bar. Gloomy, and rain N. E. 3.
Midnight.-Wiud North, rain.
9 th April, 9 д. m.-Heavy squalls, confused se:1, wind N. E. to N . barometer 29.94 .
'Thermometer 81.
11 A. M.-Cyclone first struck ship steaming to westward, wind S. E. 6, heavy sea, contused barometer 29.96, rain and gloomy.

Noon.-Latitude $14^{\circ} 59^{\prime} 30^{\prime \prime}$ N., longitude $91^{\circ} 15^{\prime}$ E. by account. 1 p. m.-High sea from south rolling heads, washed away boat, wind increasing, E. S. E. barometer 29.59, thermometer 82.5, steaming W. by N. and W. N. W.

4 p. m.-Wind N. N. E. increasing fast, heavy cyclone, squalls, with heavy rain, thunder and lightning, barometer falling rapidly. llove to with head to eastward, sails blown away.

7 p. M.-Wind N. N. W. blowing furiously, cross sea, squally and rain, barometer 29.20 lost jib boom and 24 pr . gun.

10 p. M. - Wind drawing to westward, vessel shipping seas fore and aft, barometer 29.49.

Midnight.-Lost sails, blown away, furled. Barometer rising, slightly moderating.

10th April, 4 A. m.--Stood S. W. ward, shipped heavy sea from S. E., ship rolling heavily, wind N. W. to W., passed ship standing to eastward.

Variable winds to westward all the 10 th.
Remarks.
Gale was strongest at 4 P. m. on 9th, with wind suddenly increasing to north, barometer falling rapidly till 4, then rising, moderated at 2 A. Mr. on 10thr, confused sea all forenoon. Capt. Campbell had the kinduess to procure this memo. for me, and also to lay down the track of the Coromandel.

Memo. from Log of Honorable E. India Company's Steamer Dalhousie, Lt. Hellard, I. N. from Calcutta to Port Blair.

7th April.-River Hooghly at Calcutta, weather fine, winds variable, barometer at 9 м. м. 29.90 Temp. 83.

8th April.-River Hooghly at Calcutta, wind westerly and northwesterly, weather fine, barometer at 9 A. м. 29.96 Temp. 82.

9th April.-Proceeding down the river, wind westerly 2-4 barometer 30.00 Temp. 83.

10th April.-At 1-30 r. ar., the Pilot left the ship, winds between W. and S. 4. Barometer at 9 д. m., 29.97 Temp. 85.

At noon of 10 th.-Latitude $15^{\circ} 51^{\prime} \mathrm{N}$. lougitude $89^{\circ} 59^{\prime} \mathrm{E}$.
11 th April.-Wind S. S. W. 3-1 fine, barometer at 9 A. M. 29.96 Temp. 83.

At noon.-Latitude $16^{\circ} 52^{\prime} \mathrm{N}$. longitude $92^{\circ} 16^{\prime} \mathrm{E}$.
12th April.-Calm, latitude $14^{\circ} 36^{\prime} \mathrm{N}$. longitude $93^{\circ} 41^{\prime} \mathrm{E}$.

> Memo. from Log of Ship Elward, from Kurrachee to Port Blair.

7th April.-At noon latitude $7^{\circ} 13^{\prime} \mathrm{N}$. longitude $88^{\circ} 31^{\prime} \mathrm{E}$., wind northerly and variable with calm.

8th April.-At noou latitude $7 \circ 34^{\prime}$ N. longitude $89 \circ 1^{\prime}$ E. winds S. W., steady breeze and fine.

9 th April.-At noon latitude $8^{\circ} 28^{\prime} \mathrm{N}$. longitude $90^{\circ} 52^{\prime}$ E. winds S. W. and W. S. W., fresh breeze and cloudy.

10th April.-At noon latitude $10^{\circ} 23^{\prime} \mathrm{N}$. longitude $92^{\circ} 40^{\prime} \mathrm{E}$. sighted little Andiman at 8 a. m., wind N. W. all day, fine and steady.

Memo. of observations at Chatham Island, Port Blair,

 Barometer. By Dr. Gamumer.7th April. \mid 8th April. \mid 9th April. $\mid 10$ th April. Bar. Wind. Bar. Wind. Bar. Wind. Sunrise.-29.52, Easterly. 29.77 , South. 29.73, S. W. 10 д. м.-29.82, N. E. 29.79, S. 29.83 , S. W. 4 р. м.-29.82, N. E. 29.77, S. 29.83, W. Sunset-29.80, E. N. E. 29.77, S. W. 29.85 , N. W. $\mid 29.92$, N.W.

Remarks.-It commenced to blow head at midnight, following the 7th. The position of Chatham Island being confined within the harbour, the iudications will not follow the smaller changes in the open sea, but for the greater alterations in the directions of the wind, they are sufficiently close.

> On IIypsometrical Measurements by means of the Barometer, and the Boiling-point Thermometer.-By James Burgess, Esq.

The whole subject of the barometrical measurement of heig!ts has been investigated by so many eminent physicists since the time of Pascal and Descartes, that it is not to be expected that much that is new can now be added to the theory. The object of this paper is-(1) by correcting the constants used in the latest development of the usual formula, according to the most recent and trustworthy experiments, to render the results obtained in practice as accurate as possible; and,-(2) to deduce formula and tables for facilitating the computation of heights by means of the temperature of boiliug water, which shall give results more in accordance with the truth than the tables hitherto employed.

I.-Barometrical Mcasurements.

1. The most recent and complete iuvestigation of the theory of the measurement of heights by aid of observations with the barometer, is that of Bessel iu the Astronomische Nachrichten.* This formula may be writteu in a geueral form, thus:-

$$
\log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}=\frac{(g)\left(h^{\prime}-h\right)}{\mathrm{L}(1+a t)}\left\{1-\alpha \cdot \frac{(1-d) p}{\sqrt{\mathrm{P} \mathrm{P}^{\prime}}}\right\}
$$

where-
P is the weight or pressure of the atmosphere at the lower statiou, aud P^{\prime} that at the upper, the unit of pressure being that exerted by a column of mercury of 336.905 Paris lines or 29.9218 English inches at the sea-level in latitude 45°.
h is the approsimate height of the lower station, and h^{\prime} of the upper, above the level of the sea; so that if H, and H^{\prime} respectively represeut the true altitudes of the stations and r the radius of the earth, theu-

$$
\hbar=\frac{r \mathrm{I}^{\prime}}{r+\mathrm{H}}, \text { aud } \pi^{\prime}=\frac{r \mathrm{H}^{\prime}}{r+\mathrm{H}^{\prime}}
$$

(g) is the ratio of the force of gravity at the sea-level in the latitude λ, of the two stations to that at the sea-level in latitude 45°.
a, denotes the fraction of mean saturation of the stratum of air between H and H^{\prime}, and taking the fractious of mean saturation at the two stations, we may use for that of the stratum $\frac{1}{2}\left(a+\alpha^{\prime}\right.$.)
a is the co-efficient of dilatation of the air for an increase of 1° of temperature, t denotes the mean temperature of the stratum reckoned from freezing point.
d is the density of vapour in terms of that of air ;
P , the tension of vapour of the temperature t. And
I, a constant depeudant on the relative density of the air and of mercury.
2. But, in order to obtain accurate results by means of this formula, it is of importance that the constauts shoald be determiued as accurately as possible.

[^3]Now (g), which depends on the variation of gravity between the equator and the poles, has the form-

$$
(g)=1-\frac{1}{2} n \cos .2 \lambda .
$$

where n is $\frac{5}{2}$ times the ratio of the centrifugal force to gravity at the equator, diminished by the ellipticity of the earth. Slightly different values have been deduced by different philosophers for the value of n, , but with Bessel we may adopt-

$$
\frac{1}{2} n=0.00 \div 6257
$$

and consequently we have

$$
(g)=1-0.0026257 \cos 2 \lambda
$$

3. The constant L is the most important, and depends on the density of the air in terms of that of mercury; thus, B being the standard height of the barometer at the level of the sea in latitude 45°; D, the density of air under the pressure B of mercury in terms of the density of mercury, and M the modulus of the common logarithms-

$$
\mathrm{L}=\frac{\mathrm{B}}{\mathrm{D} \mathrm{M}} .
$$

Bessel, in determining the value of L, has derived it from the experiments of Arago and liot on the weight of air, whence he fiuds 1
$\mathrm{D}=\frac{1}{10466.8}$.
Ritter, however, has shewn that according to Regnault's experiments, the weight of a litre of air containing the average amount of 0.000 t of its volume of carbonic acid and under a pressure of 760 mm . of mercury is 1.2934963 gramme. \dagger Now the latitude of the college in Paris is $48^{\circ} 50^{\prime} 14^{\prime \prime}$, and the leight above the sea is

* If for the ratio of the centrifugal foree to gravity we adopt the value $\frac{1}{289.4}$, and Bessel's value of the ellipticity $\frac{1}{299.15}$ we have $n=\frac{5}{2} \circ \frac{1}{289.4}-\frac{1}{299.15}=$ 0.0052961 , or $\frac{1}{2} n=0.0026182$; Laplace, Gauss and Littrow used for $\frac{1}{2} n$ the value 0.002845 ; Poisson (Traité de Mécanique 2nd ed.) gives $\frac{1}{2} n=0.002588$; Sabine from his pendulum experiments infers that $\frac{3}{2} n=0.0025914$; and Baily (Mem. Ast. Soc, vol. vii. p. 94) gives . 0025659.
+ Memoires de la Société de Physique de Genève, tom. iii. p. 361.

60 metres. And Poisson has shewn* that the force of gravity at the height z above the mean level of the sea is-

$$
\left\{1-\left(2-\frac{3 \rho^{\prime}}{2 \rho}\right) \frac{z}{r}\right\} \times \text { force of gravity at the sea level } ;
$$

where ρ^{\prime} is the density of that part of the earth above the mean level of the sea, and ρ the mean density of the earth. Hence the weight of a litre of dry air at the level of the sea, in latitude 45° under a pressure of 29.9218 inches is-

$$
\begin{gathered}
1.2934963 \div\left\{\left(1-1.32 \frac{z}{r}\right)\left(1-.0026257 \cos 97^{\circ} 40^{\prime} 28^{\prime \prime}\right)\right\} \\
=\frac{1.2934963}{1.00033847}=1.2930586 .
\end{gathered}
$$

Now, if we take the standard height of the English barometer as 30 inches, we have for the weight under that pressure at 32° Faht.;-

But the weight of a litre of mercury is 1359 gr , and hence,

$$
\mathrm{D}=\frac{1296438}{13596}=\frac{1}{10487.2}, \uparrow
$$

and since $30^{\mathrm{in} .}=2.5$ feet and $\mathrm{M}=0.43429148$, we have, -

$$
\mathrm{L}=\frac{\mathrm{B}}{\mathrm{D} . \mathrm{M}}=\frac{2.5 \times 10487.2}{0.43429448}=60369.15 \text { feet. }
$$

4. a, or the co-efficient of the dilatation of the air has usually been taken from the experiments of Gay Lussac, who found the expansion between the freezing and boiling point of water to be 0.375 of its volume at 32° Faht.; Rudberg found 0.3648 ; Magnus 0.365508 ;

* Poisson, Traite de Meeanique, tom. ii. p. 629.
\dagger Under a pressure of 29.9218 in ., $D=\frac{1.2930586}{13596}=\frac{1}{10516.46}$, or $\frac{1}{472}$ part of itself less than Bessel's value ; and $L=\frac{2.49304}{D M}=60369.15$ feet as above.
and Regnault 0.36706 . Adopting 0.367 as the total expansion between 32° and 212° Faht. we have for 1° Faht.-

$$
a=0.0020389
$$

5 . The value of d, or the density of aqueous vapour in terms of that of the air, used by Bessel was 0.62 as found by Berzelius; Reg. nault's experiments give 0.621 as a more accurate determination, and hence $1-d=0.379$.
6. Again p, the pressure of aqueous vapour in terms of that of the atmosphere at the temperature t° reckoned from freezing point, may be determined by Reguault's formula, or from any table calculated by means of that formula.

In the usnal tables of tensions computed from Regnanlt's formula, the tensions are expressed in inches of mercury,* and if we put p^{\prime} for these values we have -

$$
p^{\prime}=29.9218 p
$$

7. Lastly, the geometrical mean of the two scmidiameters of the earth, according to Airy \dagger is

$$
r=20,888,733 \text { feet. }
$$

S. Now if B and B^{\prime} be the heights of the barometer at the lower and upper stations reduced to 32° Faht.-

$$
\mathrm{P}=\frac{\mathrm{B}}{30} \times(g)\left(\frac{r}{r+\mathrm{H}}\right)^{2}, \text { and } \mathrm{P}=\frac{\mathrm{B}^{\prime}}{30} \times(g)\left(\frac{r}{r+\mathrm{H}^{\prime}}\right)^{2}
$$

and sinec Π is nearly equal to H, ,

$$
\log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}=\log \frac{\mathrm{B}}{\mathrm{~B}^{\prime}}+\frac{2 \mathrm{M}\left(h^{\prime}-h\right)}{r}
$$

and with suflicient accuracy for our purpose-

[^4]\dagger See IIerschel's Outlines of Astronomy, sec. 206.

Substituting these values in the formula, we have

$$
\begin{aligned}
& \log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}=\frac{(g)\left(h^{\prime}-h\right)}{\mathrm{L}(1+a t)}\left\{1-a \cdot \frac{0.379 p^{\prime}}{\left.\sqrt{\mathrm{P} \mathrm{P}^{\prime}}\right\}, \text { and }-}\right. \\
& \log \frac{\mathrm{B}}{\mathrm{~B}^{\prime}}=\frac{\left.(g) h^{\prime}-h\right)}{\mathrm{L}(1+a t)}\left\{1-\frac{2 \mathrm{M} \cdot \mathrm{~L}(1+a t)}{(g) r}-\frac{\alpha 0.379 p^{\prime}}{\sqrt{\mathrm{BB}^{\prime}}}\right\} .
\end{aligned}
$$

Replacing a, by $\frac{+a^{2}}{2}$, and introducing the values of $2 \mathrm{II}, \mathrm{L}$, and r, in the factor within the parenthesis, this equation becomes

$$
\begin{gathered}
\log \frac{\mathrm{B}}{\mathrm{~B}^{\prime}}=\frac{(g)\left(h^{\prime}-h\right)}{\mathrm{L}(1+a t,)} \times \\
\left\{\frac{(g) 20858733-52436(1+a t)}{20888733(g)}-\frac{0.1895 p^{\prime} \cdot \alpha+\alpha^{\prime}}{\sqrt{\mathrm{BI} \mathrm{~B}^{\prime}}}\right\},
\end{gathered}
$$

and without any sensible error,-

$$
\begin{aligned}
& \log \frac{\mathrm{B}}{\mathrm{~B}^{\prime}}=\frac{(g)\left(h^{\prime}-h\right)}{\mathrm{L}(1+a t)}\left\{\frac{397.37-a t}{398.37}-\frac{\left(a+a^{\prime}\right) .0 .1895 p^{\prime}}{\sqrt{\mathrm{B}} \overline{\mathrm{~B}^{\prime}}}\right\} \\
& =\frac{(g)\left(h^{\prime}-h\right)(397.37-a t)}{398.37(1+a t)}\left\{1-\frac{\left(a+a^{\prime}\right) .75 .49 p^{\prime}}{(397.37-a t) \sqrt{\mathrm{B} \mathrm{~B}^{\prime}}}\right\}
\end{aligned}
$$

Hence, we have for the approximate height,

$$
h^{\prime}-h=\left(\log \mathrm{B}-\log \mathrm{B}^{\prime}\right) \times \frac{398.37(1+a t)}{397.37-a t,} \mathrm{~L} \times \frac{1}{(g)} \times \frac{1}{1-\frac{a+a^{\prime}}{\sqrt{\mathrm{BB}^{\prime}}} \cdot \frac{75.49 p^{\prime}}{397.37-a t}}
$$

and for the true height-

$$
\mathrm{H}^{\prime}-\mathrm{H}=h^{\prime}-h+\frac{h^{\prime 2}}{r-h^{\prime}}-\frac{h^{2}}{r-h} .
$$

It remains to adapt these formula for tabular computation; and for the sale of brevity let us write

$$
\begin{aligned}
& \mathrm{A}=\frac{398.37}{397.37-a t} \cdot \mathrm{~L}(1+a t) \\
& \text { and } \mathrm{C}^{\prime}=\frac{75.49}{397.37-a t}{ }^{\prime} p^{\prime}
\end{aligned}
$$

both which depend on t, the half sum of the temperatures at the tro stations, so that we may write $t=\frac{1}{2}\left(t+t^{\prime}\right)-32^{\circ}$, t and t^{\prime} being the temperatures of the air at the lower and upper stations respectively in degrees Faht. The values of $\log A$ and $\log \mathrm{C}^{\prime}$ are tabulated in the first table at the end of this with the argument $\frac{1}{2}\left(t+t^{\prime}\right)$

The whole factor dependant on the lumidity of the air may be written-

$$
\mathrm{C}=\frac{1}{1-\mathrm{C}^{\prime} \cdot \frac{a+a^{\prime}}{\sqrt{\left(\mathrm{BB}^{\prime}\right)}}}
$$

and its logarithm is given in Table Il with the argument-

$$
\log \frac{\mathrm{C}^{\prime}\left(\alpha+a^{\prime}\right)}{\sqrt{\mathrm{BB}^{\prime}}}
$$

For tho term giving the corrcction for latitude we may write-

$$
\mathrm{G}=\frac{1}{(g)}=\frac{1}{1-0.0026257 \cos .2 \lambda}
$$

and tabulate $\log \mathrm{Cx}$ for the different values of λ, as in Table 111 . Then :-
$\log \left(k^{\prime}-h\right)=\log \left(\log \mathrm{B}-\log \mathrm{B}^{\prime}\right)+\log \mathrm{A}+\log \mathrm{C}+\log \mathrm{G}$.
And lastly from Table IV a sinall correction due to the decrease

$$
l^{\prime 2}
$$

of gravity above the sea-level is found, and the quantity $\underset{r-l^{\prime}}{ }$ there h
given, is to be added to $k^{\prime}-h$, and the value of - is to be sub-$r-\ell$ tracted, giving

$$
\mathrm{H}^{\prime}-\mathrm{II}=h^{\prime}-h+\frac{h^{\prime 2}}{r-h^{\prime}}-\frac{h^{2}}{r-h},
$$

for the true difference of altitude of the two stations in feet.
In using the tables, it must be observed that τ and τ^{\prime} being the temperatures of the mercury at the two stations and b, b^{\prime} the observed heights of the barometer,

$$
\begin{array}{r}
\log \mathrm{B}-\log \mathrm{B}^{\prime}=\log b-\log b^{\prime}-0.0000435\left(\tau-\tau^{\prime}\right) \\
2 \mathrm{x} 2
\end{array}
$$

when the expansion of the mercury alone has to be taken into account; but when the scale of the barometer is brass and extends from the cistern-

$$
\begin{gathered}
\log \mathrm{B}-\log \mathrm{B}^{\prime}=\log b-\log b^{\prime}-0.00003905\left(\tau-\tau^{\prime}\right) \\
\text { Exanple. }
\end{gathered}
$$

M M Bravais and Martins made the following observations:-On M. St. Bernard 8114 feet above the level of the sea $B=568.03$, $\mathrm{t}=7 .{ }^{\circ}$ Cent. or $45 . .^{\circ} \mathrm{F}$. and $a=0.59$; and on M. Blanc $\mathrm{B}^{\prime}=$ $42 \mathrm{~mm} .29, t^{\prime}=-9.1 \mathrm{C}$. or 15.3 F . and $a^{\prime}=0.57$.

Here

$$
\begin{array}{cc}
\mathrm{B}=22.3 \mathrm{in} .4_{1} . \log 1.34955 & \frac{1}{2}\left(t+t^{\prime}\right)=30^{\circ} .6 \mathrm{~F} . \\
\mathrm{B}^{\prime}=16.705 . \log 122284 & \alpha+a^{\prime}=1.16
\end{array}
$$

Diff. 0.12671. . $\log 9.102811$
$\sqrt{\text { B B' }} . \log 8.7138-10$
Table I,..... Log A. 4.780555 'I'ab. I. $\log \mathrm{C}^{\prime} 8.5078$
Table II, \log C. 0.000812

$$
a+a^{\prime} . . \log \quad 0.0645
$$

Table III,.... Log G.- 0.000033

$$
\mathrm{C}^{\prime} \cdot \frac{a+a^{\prime}}{\sqrt{\mathrm{BB} \mathrm{~B}^{\prime}}}=7.2861
$$

Then by Table IV. $7659+12.9-3.2+8114=15782.7$ feet the lieight.

II.-Measurement of ILeights by the Boiling Point of Water.

1. It has long been known that the temperature of ebullition is lowered, as the pressure under which a fluid boils is decreased. This was first used by Archdeacon Wollaston, about 1817, as a means of measuring altitudes. Wollaston, however, in drawing up his table of heights corresponding to different temperatures of boiling water, made use of the empirical formula of Dr. Ure, for the elasticities of steam of different temperatures, and which was not calculated to give accurate results.

In the Journal of the Asiatic Society for 1833, the late Mr. James Prinsep discussed the subject, using Tredgold's formula for the tension of steam, but modifying the results to make them agree
as nearly as possible with the experiments of Ure, Southern and Dalton.* From these results, he calculated a table of heights corresponding to the boiling point for each degree of temperature from 176° to $214{ }^{\circ}$. From observations made simultaneously with the barometer and boiling point thermometer, Colonel Sykes inferred that Prinsep's table gave altitudes generally less than those indicated by his barometer. Sykes made no observations at greater altitudes than 4500 feet, but at that height, the average error in Prinsep's table, seems to be over 100 feet.

This subject has since been discussed in a paper by Professor J. D. Forbes, published in the transactions of the Royal Society of Edinburgh for 1812-3, founded on observations made among the Alps. By projecting the elevations as derived from barometrical observations, but uncorrected for temperature, in terms of the observed boiling points, he found that a straight line passed aluost quite through the whole of the projected points. Hence he inferred "that the temperature of the boiling point varies in a simple arithmetical ratio with the height."
2. This hypothesis seems to require examination. The general form of the formula for heights as measured by barometrical observations is,-

$$
h=\mathrm{L} \times \log \frac{\mathrm{B}}{\mathrm{P}^{\prime}}
$$

where B^{\prime} and B are the heights of the barometer at the upper and lower stations respectively, h the difference of elevation, and L the constant determined in the preceding section. But were Professor Forbes's hypothesis true, we should have-

$$
\mathrm{T}-\mathrm{T}^{\prime}=n \log \frac{\mathrm{~B}}{\mathrm{~B}^{\prime}}, \ldots \ldots \ldots \ldots \ldots
$$

T and T^{\prime} being the boiling temperatures at the two stations or under the pressures B and B^{\prime} respectively. And combining these formula, we obtain-

$$
\begin{equation*}
h=\frac{\mathrm{L}}{n}\left(\mathrm{~T}-\mathrm{T}^{\prime}\right) \tag{2}
\end{equation*}
$$

as the expression for the approximate height.

[^5]Now, in order to determine whether the hypothesis is correct or not, it is only necessary to discover whether or not the quantity n, as derived from observations made at different altitudes is constant. In the following table I have collected a ferw observations made by Professor Forbes,* Dr. Hooker, \dagger M. Marié, \ddagger and others, tabulating in column (5) the value of n derived from each, and in column (6) the boiling point corresponding to the observed pressures given in column (3) calculated on the supposition that $n=112$. Column (7) shews the differences between these and the observed values.

(1) ${ }_{\text {Station }}$	(2)	(3) Barometer in in. ches and at $32^{\circ} \mathrm{F}$.	(4) Observed boiling point correeted	(5) Calenlated value of n.	$\begin{gathered} \text { (6) } \\ \text { Calculat- } \\ \text { ed boiling } \\ \text { point } \\ \text { from } \\ n=112 . \end{gathered}$	(7) Diff.
Gt. R	Hook	29.211	210.98	3.91	$21 C^{\circ} .70$	Co. 10
Martigny.	Dr. Forbes	28.489	209.5	117.29	209.61	$+0.11$
Mont Pila.	M. Marié.	28.207	209.0	115.19	209.13	+0.03
do. ",		26.258	205.48	114.88	205.65	+0.17
do	do.	25.819	204.71	113.82	204.83	+0.12
Churra,KhasiaMts.	Dr. Hooker.	25.596	204.3	111.68	204.28	-0.02
Mont Pila.	M. Marié.	25.433	203.88	115.01	204.09	$+0.21$
Gressonay.	Dr. Forbes.	25.143	203.58	111.4	203.54	-0.04
Choongtam.	Dr. Eooker.	24.697	202.5	112.4.6	202.54	+0.04
Myrung, Khasia.	do.	24.453	201.9	113.75	202.06	$+0.16$
Prarayon.	Dr. Forbes	23.893	200.96	113.0	201.06	+0.10
Darjiling.	Dr. Hooker.	23.358	199.6	114.09	199.83	+0.23
Tacul.	Dr. Forbes.	23.353	199.98	111.7	199.94	-0.04
do.	do.	23.154	199.48	112.43	199.53	$+0.05$
St. Bernard.	do.	22.674	198.46	112.4	198.51	+0.05
Zemu Samdon	Dr. Hooker.	21.605	195.9	112.93	19603	+0.13
Col Collon.	Dr. Forbes.	20.77	194.53	110.16	194.21	-0.29
Mainom, Sikkim.	Dr. Hook	20.48	193.4,	11219	193.43	$+0.03$
Yeumtong, do.	do.	19.49	191.1	111.58	191.02	-0.08
Tungu, do	do.	18.869	189.5	111.73	189.45	-0.05
Mont Blanc.	Saussure.	17.133	187.23 \$	109.97	186.89	-0.34
Pichinclia.	M. Wisse.	17.208	185.27°	111.26	185.09	-0.18
Yeumtso, Sikkim.	Dr. Hooker.	16.385	183.2	109.64	182.58	-0.62
Sebolah Pass, do.	do.	16.928	181.9	109.48	181.21	-0.69

* Edin. Phil. Trans. rol. xv.

† Given in a sccond paper by Prof. Forbes, Edin. Phil. Trans. vol. xxi. part 2.
\ddagger Quoted by Regnault, Ann. de Chim. et de Phys. July 1841.
§ Sanssure's boiling-point, 80° R., corresponded to a pressure of 27 French inches.

The numbers in columns (5) and (7) of this table at once shew that whilst the lypothesis of Professor Forbes is not rigorously true, n decreasing with the temperature, it is still a very good proximation when the heights are under 10,000 feet, or the boiling-point above 193° Faht.; and as 112 is about the mean ralue of n, we have by substitution in equation (2), and using 60369 feet as the value of L, 一

$$
\begin{equation*}
h=539.01\left(\mathrm{~T}-\mathrm{T}^{\prime}\right), \tag{3}
\end{equation*}
$$

as the expression for the height uncorrected for the temperature of the air. Professor Forbes, in the paper above referred to, gives 549.5 as the value of the co-efficient, and in a later paper on the same subject he proposes 543.2 feet as best representing observiltions when the boiling-point is above 190° Faht. or when tho heights are under 12,000 feet; but when the boiling. point is above 192° F., he states in a note that the co-efficient should be only 535 feet, in order to express the heights as derived from Regnault's table of tensions.
3. After making due allowance for errors of observation, it is evident that the values of n in column (5) of the preceding table, decrease with the temperature. Hence, in order to derive a formula which shall accurately represent heights in terms of the boiling-point of water, it is only necessary to determine the value of n at the standard boiling-point, and the mean rate of its variation for temperatures near that point. For this purpose Reguault's tension series, from the method by which he obtained his experimental values, may be taken as representing the pressures under which water boils at different temperatures.* For temperatures near 100° Cent. however, Moritz has shewn that the values in Regnault's table are slightly in error on account of the constants not having been calculated with sufficient accuracy. Moritz has corrected and published the values of the tensions where they differ from Reguault's. \dagger In what follows, I have used these corrected values.
Now, from equation (1) we at once derive,-

[^6]\[

$$
\begin{equation*}
n=\frac{T-T^{\prime}}{\log B-\log B^{\prime}} \cdots \cdots \cdots \cdots \cdot \tag{4}
\end{equation*}
$$

\]

and hence when $B=B^{\prime}$, and $T=100^{\circ}$ cent. using Moritz's values, we have

$$
\begin{equation*}
n=\frac{d \mathrm{~T}}{d \cdot \log \mathrm{~B}}=\frac{\mathrm{B} \cdot d \mathrm{~T}}{\mathrm{M} \cdot d \mathrm{~B}}=64.307626 \ldots \tag{5}
\end{equation*}
$$

and wheu ' $\mathrm{T}^{\prime}=S 0^{\circ} \mathrm{C}$., we have, by equation (4) -

$$
n_{80}=\frac{20}{\log B_{100}-} \frac{-\log B_{80}^{\prime}}{=}=60.412836
$$

and as the value of n is found to vary pretty regularly with the temperature betweeu these two poiuts, we may write-

$$
\begin{align*}
n_{\mathrm{T}} & =64.30763-\frac{n_{100}-n_{80}}{20}(100-\mathrm{T}) \\
& =64.30763-0.1917445(100-\mathrm{T}) \ldots \tag{6}
\end{align*}
$$

Substituting this value iu equation (4) we find -

$$
\begin{align*}
\log \mathrm{B}_{100}-\log \mathrm{B}_{\mathrm{T}} & =\frac{100^{\circ}-\mathrm{T}}{64.3076-0.19474(100-\mathrm{T})} \\
& =\frac{5.13493(100-\mathrm{T})}{330.215-(100-\mathrm{T})} \ldots \ldots .
\end{align*}
$$

We obtain a result almost identical with this by applying the method of least squares to the logarithms of Moritz's tensious at $80^{\circ}, 85^{\circ}, 90^{\circ}$ and 95°, viz.-

$$
\begin{equation*}
\log B_{100}-\log B_{T}=\frac{5.108555(100-T)}{328.62566-(100-T)} . \tag{S}
\end{equation*}
$$

either of the equations (7) and (8) will give the logarithms of the pressures in millimetres of mercury for temperatures betweeu 80° and $100^{\circ} \mathrm{C}$. generally correct to the 5 th or 6th decimal place, by usiug the following values.

$$
\begin{aligned}
& \text { For } \log B_{100}=\log 760^{\mathrm{mm} .} \text {. } 2.8808136 \\
& \text { For } \log 5.108555 \ldots \\
& 0.7082981
\end{aligned}
$$

If now we combine equatious (2) and (8) aud introduce the value of L for a staudard atmosphere at $0^{\circ} \mathrm{Cent}$, the approximate height is

when expressed in metres above the point where water boils at 100° cent.
4. Now if the boiling-point on Falrenheit's scale coincided exactly with that on the centigrade, that is if $212^{\circ} \mathrm{F}$. represented the temperature of boiling water under a pressure of 29.9218 inches of mercury,* this formula, and the logarithms of the pressures in the table of Moritz might at once be modified to suit the English seales. But if the thermometer be so constructed that the boiling-point is at $212 \circ$ F. under 30 inches of pressure, the centigrade ought, in the same circumstances, to shew $100^{\circ} .0729$; and as the freezing point may be considered invariable, $176^{\circ} \mathrm{F}$. will coincide with $80^{\circ} .0583$ C. To make the necessary correction for this difference, which is often overlooked, I lave, after interpolation anong Moritz's pressures, derived the following formula of essentially the same form as that first used by Biot, \dagger and which accurately represents the results derived from Moritz's table,-

$$
\left.\begin{array}{r}
\log \mathrm{B}_{\mathrm{T}}=\log 30-0.008641566\left(212^{\circ}-\mathrm{T}\right) \\
-0.0000143365\left(212^{\circ}-\mathrm{T}\right)^{2}-0.00000003161\left(212^{\circ}-\mathrm{T}\right)^{3} . \tag{10}
\end{array}\right\}
$$

This formula, which is adapted to Fahrenheit's scale, will give the same results as the more complicated one of lecgnault when T lies be. tween 172° and 216° Faht. The valnes of the logarithms of the pressures in the table of Moriz may, in like mamer, be represented between 75° and $102^{\circ} \mathrm{C}$. by the formula,-

* "J' adopterai les températures, au thermomètre à mercure, divisé en cent degrés, depuis la température de la glace fondante, jusqu'à celle de l'eau bonillante sous une pression équivalente au poids d'une colonne de mercure, de soixante et seize centimètres de hauteur." Laplace, Exposilion du syslême du Monde -avertissement.
† Biot, Traité de Pliysique (1816) tom. I. 1. 278 ; also Ency. Metropol. (1S1i) vol. iv. p. 249.
$\log B_{r}=\log 760-0.01555026\left(100^{\circ}-T\right)$
$\left.-0.0000161227\left(100^{\circ}-\mathrm{T}\right)^{2}-0.00000018515\left(100^{\circ}-\mathrm{T}\right)^{3}\right\}$
By means of equation (10), Table V. has been constructed, giving the logarithms of the pressures in inches of mercury for every fifth part of a degree from 176° to $215^{\circ} \mathrm{F}$.; and from the same equation we derive for Fahrenheit's scale-

$$
n=\frac{\mathrm{B} \cdot d \mathrm{~T}}{\mathrm{M} \cdot d \mathrm{~B}}=115.71976,
$$

and from the table, by least squares, -

$$
\begin{align*}
\log 30-\log \mathrm{B}_{\mathrm{F}} & =\frac{212 \cdot-\mathrm{T}}{115.71976-0.1957}-\frac{512-\mathrm{T})}{(212} \\
& =\frac{5.108273(212-\mathrm{T})}{379.319+\mathrm{T}} \ldots \ldots \ldots . \tag{11}
\end{align*}
$$

$$
\text { where } \log 5.108273=0.7082741
$$

And, as before, the elevation in feet above the point where water boils at 212° Faht. will be found by multiplying the right hand side of this equation by $\mathrm{L}=60369$ feet, viz. :

$$
\begin{equation*}
h=\frac{308382(212-\mathrm{T})}{379.319+\mathrm{T}} \tag{12}
\end{equation*}
$$

or $\log h=5.488089+\log (212-\mathrm{T})-\log (379.319+\mathrm{T})$.
5. If the boiling-point be observed at two stations, whose difference of level is required, -writing $\mathrm{D}=212^{\circ}-\mathrm{T}$, and D^{\prime} for $212^{\circ}-\mathrm{T}^{\prime}$, we have,-

$$
\left.\begin{array}{c}
h^{\prime}-h=\frac{308382\left(\mathrm{~T}-\mathrm{T}^{\prime}\right)}{167.319+\left(\mathrm{T}+\mathrm{T}^{\prime}\right)+0.00169 \mathrm{DD}^{\prime}}, \tag{13}\\
\text { or, since } 0.00169 \text { is very nearly } \frac{1}{600}, \text { we may use } \frac{\mathrm{DD}}{600^{\prime}}, \\
\therefore \log \left(h^{\prime}-h\right)=5.488089+\log \left(\mathrm{T}-\mathrm{T}^{\prime}\right) \\
\quad-\log \left(167.319+\mathrm{T}+\mathrm{T}^{\prime}+\frac{\mathrm{DD}^{\prime}}{600}\right)
\end{array}\right\}
$$

6. The same value of h as found from equation (12) may also be derived, in a different form, from equation (10), by multiplying $\log 30-\log \mathrm{B}$ by L, thus :-

$$
\begin{align*}
h=521.684 & (212-\mathrm{T})+0.8655(212-\mathrm{T})^{2} \\
& +0.0019\left(212-\mathrm{T}^{\prime}\right)^{3} \ldots \ldots \ldots . \tag{14}
\end{align*}
$$

or, as a good approximation in two terms, -

$$
\begin{equation*}
h=520.476(212-\mathrm{T})+0.967(212-\mathrm{T})^{2} . \tag{15}
\end{equation*}
$$

7. For the height in metres in terms of ' T on the Centigrade scale, we may, instead of equation (9), use,--

$$
\left.\begin{array}{l}
h_{\mathrm{m}}=286.2(100-\mathrm{T})+8546(100-\mathrm{T})^{2}+0.00341(100-\mathrm{T})^{3}, \\
\text { or approximately, } h_{\mathrm{m}}=285.54(100-\mathrm{T})+0.955\left(100-\mathrm{I}^{\prime}\right)^{2} .
\end{array}\right\}(16)^{*}
$$

8. The equations now deduced for expressing the height in terms of the boiling-point of water require to be corrected in the same manner for the temperature of the air, \&c. as those derived from barometrical observations. Hence substituting equation (11) in the formula already given for the barometer, and omitting the terms depending upon the hygrometrical state of the atmosphere, and the diminution of gravity with the height, we have for the correct height-

$$
\begin{align*}
& \mathrm{H}^{\prime}-\mathrm{H}=\frac{5.10827\left(\mathrm{~T}-\mathrm{T}^{\prime}\right)}{167.319+\mathrm{T}+\mathrm{T}^{\prime}+\frac{1}{600} \mathrm{D} \mathrm{D}^{\prime}} \\
& \times \mathrm{L} \cdot \frac{398.37(1+a t)}{397.37-a t} \times \frac{1}{(g)} \ldots \ldots \ldots .
\end{align*}
$$

or, adopting the notation already employed-

* Professor Forbes has arrived at almost exactly the same results. For equation (15), he gives-

$$
517\left(212^{\circ}-T\right)+\left(212^{\circ}-T\right)^{2} ;
$$

and for equation (16)-

$$
h_{\mathrm{m}}=284(100-\mathrm{T})+(100-\mathrm{T})^{2} ;
$$

the equation-

$$
h=519.66\left(212^{\circ}-T\right)+\left(212^{\circ}-T\right)^{2}
$$

will give almost exactly the same results as eytuation (15).

$$
\left.\begin{array}{c}
\log \left(\mathrm{I}^{\prime}-\mathrm{II}\right)=0.708274+\log \left(\mathrm{T}-\mathrm{T}^{\prime}\right) \tag{18}\\
-\log \left(167.319+\mathrm{T}+\mathrm{T}^{\prime}+\frac{\mathrm{DD}}{} \mathrm{D}^{\prime}-1\right)+\log \mathrm{A}+\log \mathrm{G} .
\end{array}\right\}
$$

9. To facilitate computations of this kind, Tables V and VI have been formed. Table VI gives the height in feet above the level where water boils at 212° Faht. for every fifth part of a degree between 176° and $215^{\circ} \mathrm{F}$. This Table and the column containing the Aultiplier for the mean temperature of the air in Table I will enable us to obtain the heights, uncorrected for latitude, without the use of logarithms. Table V containing the logarithmic pressures will be of use when one of the observations is taken with a barometer.
10. When the observations are taken at the upper station ouly, it becomes necessary to estimate t, the mean temperature of the stratum of air between the sea level and that station approximately. Laplace estimated the diminution of temperature with the elevation at 16° or 17° cent. for 3000 metres of ascent,* but taking the mean of observations made on mountain sides by Saussure, Kaemtz, Bravais, Martins, Schouw, Humboldt, Boussingault, and the recent French Commission to the North, the diminution is 10 Faht. for every 303 feet of ascent. \dagger Hence we may reckon that for every degree which the boiling-point falls, the temperature of the air decreases les F., so that the mean temperature may be estimated at,-

$$
\frac{1}{2}\left(t+t^{\prime}\right)=t^{\prime}+0.9\left(212^{\bullet}-T^{\prime}\right)
$$

or when the observation is made with the barometer,

$$
\frac{1}{2}\left(t+t^{\prime}\right)=91 \frac{1}{2}+t^{\prime}-\frac{190 \mathrm{~B}^{\prime}}{30+\mathrm{B}^{\prime}}
$$

or, roughly-

$$
\frac{1}{2}\left(t+t^{\prime}\right)=60+t^{\prime}-\frac{9}{4} B^{\prime}
$$

[^7]11. With respect to the method of making observations with the boiling-point thermometer, it is ouly necessary to observe that the instrument described by Professor Forbes in the paper already referred to* seems the most convenient and trustworthy of any that has been proposed, and rery superior to that described by Colonel Sjkes, \dagger and still more so to that manufactured by Casella and sold in Thdia along with Prinsep's Table-an instrument which never could bo expected to give accurate results. Professor Forbes's boiling apparatus consisted of a thin copper pan heated by a "Russian Furnace," having a powerful jet of inflamed atcoholic vapour, which might be removed to one side until the escape of steam becane uniform and moderate, and could be used in a gale of wind. The thermometer had its bulb immersed in the water, of which a moderately large quantity is requisite to a good result.

Tho following examples will shew the use of the tables and formule.

Example I. The following data are given in "Smith and Thuillier's Manual of Surveying' (p. 436)-Boiling-point at the lower station $205^{\circ} .7$ and temperature of the air 83°; at the upper station B. P. $204^{\circ} .2$, and air 75° Faht., to find the difference of elevation,

By the formula (18)-
$\mathrm{D}=212-20 \mathrm{~s} .7=3.3 . \quad \mathrm{D}^{\prime}=212-204.2=7.8$. And $\mathrm{DD}^{\prime}=25.7 . \mathrm{T}+\mathrm{T}^{\prime}=412.9 . \mathrm{T}-\mathrm{T}^{\prime}=4.5$. And $\frac{1}{2}\left(t+t^{\prime}\right)=79^{\circ}$.

Now $167.32+412.9=580.22$
25.7

$+\frac{2}{600}=\frac{0.04}{580.26 .}$ ar. co. \log	$7.23638-10$.
$\mathrm{T}-\mathrm{T}^{\prime}=4.5 \ldots \ldots \ldots \log$	0.65321.
$\frac{1}{2}\left(\mathrm{t}+\mathrm{t}^{\prime}\right)=79^{\circ} \quad \ldots \ldots . \log \mathrm{A}$	4.82175.
Const. \log	0.70527.

Height 2028 feet $\log 3.41961$.

* Edin Trans. vol. xv.
+ See Journal of the Royal Geographical Society, vol. viii. p. 436.

Otherwise, by Table VI.

Corrected height, as before, 2628 feet.
Col. Sykes by barometrical observations finds the height 2649 fett, the difference being within the limits of error of observation.

Example II. The following data are partly taken from Prof. Forbes's paper.-Saussure's boiling-point, $80^{\circ} \mathrm{R}$. was adjusted at 27 French inches, or 28.777 Euglish. At that pressure the standard thermometer shewed $209^{\circ} .96$. De Saussure's stood therefore $2^{\circ} .04$ F. higher. Now on the top of Mont Blanc, the boiling-point was $187^{\circ} .23 \mathrm{~F}$. or reduced to the standard thermometer $185^{\circ} .19 \mathrm{~F}$. and at Geneva, 1345 feet above the sea-level, the barometer indicated 27.267 French, or 29.063 English inches, the mean temperature of the air being about $55^{\circ} \mathrm{F}$.

being almost exactly the height found barometrically by Saussure, and only 55 feet more than MM. Bravais and Martins's determination, and 59 feet higher than Corabeuf's trigonometrical measurement. The same result may also be found otherwise, thus:-

By Table VI. leight corresponding to $185^{\circ} .19$. 14645 feet.

> By Barometrical Tables the diff. of heights $\}$ corresponding to $30^{\text {no }}$ and $29^{\text {ta }} .063 \ldots .$. .

Difference, or approximate height, 13811
$\frac{1}{2}\left(t+t^{\prime}\right)=55^{\circ}$, Multiplier from Tablo I. 1.0497
Corrected height, as before, above Geneva, 14497 ft .
Example III. (Boilean's Tables, Int. p. xix.) At the Parang Pass in lat. $320 \frac{1}{4} \mathrm{~N}$. the observed temperature of the boiling-point was $179^{\circ} .3$, the temperature of the air being $27^{\circ} \mathrm{F}$. to find tho altitude of the pass above the level of the sea.
Here, by the formula, $\frac{1}{2}\left(t+t^{\prime}\right)=27^{\circ}+0.9(212-179.3)=56^{\circ}$.

$$
\text { Approximate leight by Table VI. } 18052 \text { feet }
$$

$\frac{1}{2}\left(t+t^{\prime}\right)=56^{\circ}$.. Multiplier by Table I. 1.0517
Corrected height above sea-level, 18985 feet
differing from Boileau's result principally from the higher valuo assigned to t, and partly from the standard pressure in Boileau's table being $29^{\text {ma }} .921$ instead of $30^{\text {tn. }}$, which gives a difference of about 60 feet in the elevation.
12. A small correction ought to bo applied on account of the variation of the pressure at the level of the sea in different latitudes from a standard of 30 inches. Tables V ahd VI aro calculated on the hypothesis that the pressure of the atmosphero at the level of the sea is 30 inches. Observations prove that the mean pressure varies in different latitudes, and according to the experimental and theoretical observations of Mnnke and others, tho following short table has been constructed shewing, in column (2), the height of the barometer in different latitudes equal to a height of 30 inches in lat. 45°, in columns (3) and (5) the mean heights of the barometer as derived, with some modifications, from Munke and Dr. Golding Bird* respectively, and in columns (4) and (6) tho

[^8]corresponding* corrections in feet, to be added to, or subtracted from, the altitudes derived from observations at the upper station only, by means of the tables and formulæ.

(1)	(2) Height of barometer, equal to 30in. in lat. 45°.	$\begin{array}{\|c\|} \text { (3) } \\ \text { Mean } \\ \text { heightof the } \\ \text { barometer } \\ \text { from Munke } \end{array}$	(4) Correction according to Munke.	(5) Mean height of barometer from Dr . G. Bird.	(6) Correction according to Dr. G. Bird.
0	30.079	$\begin{gathered} \text { in. } \\ 29.930 \end{gathered}$	$\begin{array}{r} \text { feet. } \\ -129.8 \\ \hline \end{array}$	$\begin{gathered} \text { in. } \\ 29.930 \end{gathered}$	$\begin{array}{r} \text { feet. } \\ -129.8 \end{array}$
10	30.074	29.935	-121.3	29975	- 86.5
20	30.060	29.950	- 96.8	30.064	+ 3.2
30	30.039	29.972	- 59.2	30.108	+ 59.8
40	30.014	29.999	- 13.2	30.019	+ 4.4
45	30.000	30.0 :3	+ 11.4	30.000	0.0
50	29.986	30.027	+ 35.9	29.968	- 15.7
55	29.973	30.041	+ 60.2	29.919	- 47.4
60	29.961	30.054	+ 81.9	29.803	-138.3
6.5	29.949	30.066	+ 101.8	29.609	-299.8
70	29.940	30.076	+ 119.5	29.740	-175.4
80	29.926	30.091	+ 143.9		

[^9]TABLE I.
Argument: $\frac{\mathrm{t}^{\prime}+\mathrm{t}^{\prime}}{2}$ Faht.

Table I. continued.

Table I. continued.

$\frac{t+t^{\prime}}{2}$	Multiplier.	Log. A.	$\begin{aligned} & \text { Ditï. } \\ & \text { for } \\ & 0^{\circ} .1 \end{aligned}$	Log. Cl^{1}.
90°	1.12110	4.830376	79,3	9.4292
91	12345	831369	79,2	4123
92	12550	832161	79,0	4503
93	12755	832952	78,9	4698
94	12960	$83: 741$	78,8	4833
95	13165	834528	78,6	4968
96	13370	835314	78,5	5090
97	13575	836099	78,3	5233
98	13781	833688:3	78,2	5365
99	13986	83766.5	78,1	5497
100	1.1419 l	4.538446	77,9	9.562 S
101	14396	839224	77,8	5760
102	14601	840002	75,6	5889
103	14806	810779	77,5	(6)19
104	15011	841554	77,4	6149
105	15216	$8123: 7$	77,2	6 ± 75
106	15421	813100	77,1	(6)46
107	15626	843871	77, ${ }^{\text {a }}$	(65:32
108	15531	844640	76, 8	(i661
109	16036	845408	76,7	6787
110	1.16241	4.816175	76,5	9.69313
111	164.16	816941	76,4	7039
112	16651	817705	76,3	7165
113	16856	848468	$7(\mathrm{i}, \mathrm{L}$	7268
114	17062	84929	76,0	7418
115	17267	849959	75.9	7537
116	17472	850748	75,	7660
117	17677	8.51506	75,6	7783
118	17882	85: 62	75,5	7905
119	18087	853017	75, 4	8026

TABLE II.
Argument-Log. $\mathrm{C}^{\prime \prime} \cdot \frac{a+a^{\prime}}{\sqrt{\mathrm{BB} 3^{\prime}}}$

Arg.	Log. C	Arg.	Lor. C	Arg.	Log. C
6.0	0.000043	7.62	0.001814	8.02	0.004572
6.1	. 000055	7.63	. 001856	803	. 004679
62	.000069	7.64	. 001900	8.04	. 004788
6.3	. 000087	7.65	. 001914	8.05	. 00 ± 900
6.4	. 000109	7.66	. 001090	8.06	. 005015
6.5	.0001:37	767	.002036	8.07	. 005133
6.6	. 000173	7.68	.00:084	8.08	.005253
6.7	.000218	7.60	. 0021382	8.09	. 005376
6.8	. 000 ± 274	7.70	. 002182	8.11	. 005502
6.9	.000345	7.71	.002233	8.11	. 005631
7.0	0.000435	7.72	0.002286	8.12	0.005763
7.05	. 000488	7.73	.002339	8.13	.005898
7.10	.000-477	7.74	. 002393	8.14	. 006037
7.15	. 000614	7.75	. 002444	8.15	. 006178
7.20	. 000659	7.76	.002506	8.16	. 006323
7.95	. 000773	7.77	. 002565	8.17	.006472
7.30	.000868	7.78	. 002665	8.18	. 006624
7.3.5	. 0000973	7.79	.002686	8.19	.006779
7.40	.001092	7.80	. 002719	8.20	. 006938
7.41	. 001118	7.81	.00:813	8.21	. 007101
7.42	0.001144	7.82	0.002880	822	0.007268
7.43	. 001171	7.83	. 002916	8.23	. 007439
7.44	. C 01198	78.	. 003015	8.24	.007500
7.45	. 001226	7.85	. 003056	8.25	.007\%9:3
7.46	. 001253	786	. 003158	8.26	. 007976
7.47	. 001284	7.87	. 003232	8.27	.008163
7.48	.001314	7.88	.00:3308	8.28	. 008355
7.49	.001344	7.89	. 003334	8.29	. 008552
7.50	. 001376	7.90	.1003464	8.30	. 005753
7.51	. 001408	7.91	. 003545	8.31	. 008959
7.52	0.601441	7.02	0003627	8.32	0.009170
7.5:3	. 001474	7.9:3	.003712	8.33	. 0093886
7.54	. 001509	7.94	.00:3799	8.34.	.009607
755	. 001513	795	. 003885	8.35	.009833
7.56	. 001580	7.96	. 003979	836	. 010065
7.57	. 001617	7.97	. 004072	8.37	. 010302
7.58	. 001654	7.98	. 00 \&167	S.38	. 010515
7.59	.001693	7.99	. 004265	8.39	. 010794
7.60	. 001732	8.00	. 004365	8.40	. 011018
761	. 001773	8.01	. 004467		

TABLE III.

Argunent:-Latitude, λ.

TABLE IV.
Anaument:-
Heigits, h, h^{\prime}.

Lat.	Log. G.		Lat.	Log. G.		h^{\prime}	$+$	h^{\prime}	$+$
λ	+		λ	$+$		1	-	7	-
0°	0.001142	90	23°	0.0007 .95	67	Ft.	Ft. 0.0	$\underset{11500}{ }$	Ft. 6.3
,	001141	89	24	000764	66	1000	0.0	12000	6.9
2	001139	88	25	000731.	65	1500	01	12500	7.5
3	001136	$\checkmark 7$	26	000701	64	2000	0.2	13000	8.1
4	001131	86	27	000671	63	2500	0.3	13500	8.7
5	001125	85	29	000638	62	3000	0.4	14000	94
6	001117	84	$\because 9$	000605	61	$3: 50$	0.6	14.00	10.1
7	001108	83	30	000571	60	4000	0.8	$\overline{15000}$	10.8
8	0.001100	82	31	0.000536	59	4500	1.0	15.500	11.5
9	001086	81	32	000500	58	5.500	1.4	16500	13.0
10	001073	80	33	000161	57	(6000	1.7	17000	13.8
11	001059	79	31	000127	56	6500	2.0	17500	14.7
12	001043	78	35	000390	55	7600	2.3	18000	15.5
13	001026	77	36	000353	54	7500	2.7	18.000	16.4
14.	001008	76	37	000315	53				17.3
15	000988	75	38	000276	52	S500	3.5	19500	18.2
16	0.000968	74	39	0. 00233	51	9000	3.9	20000	19.2
17	000946	73	40	000198	50	9500	4.3	20500	≥ 0.1
18	000924	72	41	000159	49	10000	4.8	21000	$\bigcirc 1.1$
19	000.899	71	42	000117	48	10500	5.3	$\underline{21000}$	22.2
20	000875	70	13	000080	47	13000	5.8	$\because 2000$	23.2
21	000848	69	44	000040	46				
22	0008:1	65°	45	000000	45°				
	-	λ		-	λ				
	Log. G	Lat.		Log. G.	Lat.				

TABLE V.

Logarithms of the Barometrical Pressures in inehes of Mercury corresponding to Boiling points between 176° and 215° Faht.

T.	-0	$\cdot 2$	-4	$\cdot 6$	-8	
${ }^{176}$	1.145960	1.147929	1.149877	1.151833	1.153787	978
177	155740	157692	159612	1.161591	1.163539	974
17 s	165485	167.29	169373	171314	173255	971
179	175194	177131	179068	181003	182936	967
180	181868	186799	188728	190656	192582	964
181	194508	196431	198354	200275	202194	960
182	204112	206029	207945	209859	211772	957
183	213683	215593	217502	219109	221315	953
181	223219	225122	227024	228925	230821	950
185	232721	231618	236513	238107	210299	947
186	1.242190	1.244080	1.245968	1.247855	1.219740	943
187	251625	253508	255389	257270	259148	940
188	261026	262902	$26+777$	266651	268523	937
189	270391	272264	274132	275999	277865	933
190	279729	281592	283454	285314	287174	930
191	289031	290888	292743	294597	296150	927
192	298301	300151	302000	303817	305693	923
193	307538	309381	311224	313061	31.4904	920
194.	316742	318580	320415	322250	324083	917
195	325915	327746	329575	331403	333230	914
196	1.335056	1.336880	1.338703	1.340525	1.342345	911
197	344165	345983	347799	349615	351429	908
198	353242	355054	356864	358673	360181	905
199	362288	36.1094	365898	367701	369503	901
200	371303	373102	374900	376697	378493	898
201	380287	382080	383872	385663	387452	895
202	389240	391027	392813	394597	396381	892
203	398163	399944	401723	403502	405279	889
204	407055	408830	410603	412376	414147	886
205	415917	417686	419453	421220	422985	853
206	1.424749	1.426512	1.428273	1.430034	1.431793	880
207	433551	43.2308	437064	438818	440571	877
208	412324	444075	445824	447573	449320	874
209	451067	452812	454556	456298	458040	871
210	459781	461520	463258	464995	4.66731	868
211	468163	4.70199	471931	473662	475392	866
212	477121	473849	480576	482301	484025	863
213	485749	4874.71	489191	490911	492630	860
214	494347	496064	497779	4.99493	501206	857

TABLE VI.

Heights corresponding to different boiling points from 176° to 2150 Faht. in feet.

T.	$\cdot 0$	-2	$\cdot 4$	$\cdot 6$	-8	$\stackrel{\circ}{0}$
\bullet	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.
176	19992	19874	19756	19637	19519	59.0
177	19401	19284	19166	19018	18931	58.9
178	18813	18696	18579	18461	18314	58.6
179	18227	18110	17993	17876	17760	58.4
180	17643	17527	17410	17294	17177	58.2
181	17061	16945	16829	16713	16597	58.0
182	16481	16366	16250	161 34	16019	57.8
183	15904	15788	15673	15558	15113	57.6
184	15328	15213	15098	14983	14869	57:1
185	14754	14610	14525	14411	14297	57.2
186	14183	14069	13955	13841	13727	57.0
187	13613	13499	13386	13272	13159	56.8
188	13045	12932	12819	12706	12593	56.6
189	12180	12367	1225	12142	12029	56.4
190	11916	11804	11692	11579	11467	56.2
191	11355	11243	11131	11019	10907	56.0
192	10795	10684	10572	10460	10349	55.8
193	10238	10126	10015	9904	9793	55.6
194	9682	9571	9160	9319	9239	55.4
195	9128	9418	8907	8797	8687	55.2
196	8576	84.66	8356	8246	8136	55.0
197	8026	7917	7807	5697	7588	54.8
198	7478	7369	7260	7151	7011	51.6
199	6932	6823	6714	6606	6197	54.4
200	6388	6280	6171	6063	5954	54.2
201	5816	5738	5629	5521	5413	540
202	5305	5197	5090	4982	4874	53.8
203	4767	4659	4552	4444	4337	53.7
204	4230	4123	4016	3909	3802	53.5
205	3695	3588	3481	3375	3268	53.3
206	3162	3055	2919	2813	2736	53.1
207	2630	2524	2418	2312	2206	52.9
208	2101	1995	1889	1784	1678	52.8
209	1573	1168	1368	1257	1152	52.6
210	10.17	942	837	732	627	52.1
211	523	418	313	$\because 09$	104	52.3
212	0	- 104	- 208	-- 313	- 417	52.1
213	- 521	- 625	- 729	- 832	- 936	51.9
214	- 1040	- 1144	- 1947	- 1351	- 1454	51.7

Postscript.

It may be here remarked,-1. That the formuix (10) and (11) give very approsimate results only when the pressure is above half an atmosphere, but taking Regnault's value of the teusion of vapour at 32° Fabt., we have

$$
\log p^{\prime}=1.25793+\frac{7.426375(\mathrm{~T}-32)}{422.5743+(\mathrm{T}-32)}
$$

which gives a maximum error of 0.025 in . at 122° Faht.
2. That the quantity a, or the fraction of saturation may be easily determined with very considerable accuracy from the formula-

$$
\log a=1-0.0170571(t-\tau)+0.0000289866\left(t^{2}-\tau^{2}\right)
$$

where t is the temperature of the air reckoned in degrees Fahrenheit from freezing-point, and τ the dew point reckoned in the same manner.
3. That to the constants L aud a in the general formula for the determination of heights by the barometer, and to which I have assigned the values 60369.15 feet, and 0.002039, respectively, different investigators have assigned various other values. The principal of these are as follows :-

$$
\mathrm{L} \text {, in. feet. } \quad a \text {, for } 1^{\circ} \mathrm{F}
$$

[^10]Calcutta, !9th August, 1858.

proceedings

OF THE

ASIATIC SOCLEI'Y OF BENGAL,

For September, 1858.

The Monthly General Meeting for September was held on the lst instant.

Lieut.-Col. R. Strachey, Vice-President, in the chair.
The proceedings of the August Meeting were read and confirmed.
Presentations were received-

1. From the Rajah Radha Kant Deb, Bahadoor, an Appendix to his Sanscrit Encyclopædic Lexicon called the Sabda-Kulpa-Druma.
2. From Major H. L. Thuillier through Mr. Smith, a Hindu Sculpture being the image of Vishnu.
3. From Herr. H. Schlagiutweit through Dr. Eatwell an explanatory table of the Relief des Monte-Rosa und Seiner Ungebuagen.

Lieut.-Col. Strachey on behalf of Dr. Monat presented to the Society a Photographic likeness of an Andaman Islander* and some Photographic pictures of the Volcano of Barren Island and of the vicinity of Port Blair.

Communications received.-

1. From E. Thomas, Esq., B. C. S., a Catalogue of the collection of coins and gems belouging to the late Col. Stacy for the purchase of which the Society is in treaty.
2. From Dr. C. A. Gordon of H. M. 10th Foot through the late Mr. Piddington an analysis of the Meteorological Observations taken ou board the ship Palmyra during a voyage from London to Calcutta, 1857.
3. From Dr. G. Von Liebig.-

First. An account of a Cyclone in the Andaman Sea on the 9 th and 10 thapril, 1858.

* The same man who was in Calcutta.

Second. An account of a visit to Barreu Island. This paper was read to the Meeting by the Chairman.
4. From Capt. G. H. Saxton, 3sth M. N. I., Cuttack, the following note on the last shock of an earthquake.
" I beg to bring to your notice, that this place was yesterday risited by a slight earthquake. As it may be thought desirable that such an event should be placed on the records of the Society, I am induced to write. The shock took place at 25 minutes past 30^{\prime} 'clock in the afternoon, and was of considerable violence, sufficient to give a feeling of giddiness; it was not accompanied by any thing unusual atmospherically or otherwise. There was a slight breeze at the time, and light clouds. In the bed of the river close by, the sand rose and drifted as though the breeze was strouger there, as at this season (during the rains) it does not so readily rise. The peculiar position of the earth with reference to the sun and moon, is remarkable, the occurrence taking place about a couple of hours before a lunar eclipse. The shock lasted for a very few seconds. The vibration of a set of ricketty shelves with glasses close by where I was sitting, continued after the shock and was a very palpable evidence of the amount of violence."

The Chairman communicated to the Meeting the following information regarding a flood of the Indus.
"At 5 a. m. on the 10th August, the Indus at Attock was very low. At 7 it had risen 10 feet. By half past twelve in the afternoon it had risen 50 feet, and it continued to rise till it stood 90 feet higher than it did in the morning. The exact hour of greatest flood is not mentioned.

The Cabul river continued to flow upwards for 10 hours!
At Nowshera the whole station was entirely destroyed, excepting the public buildings which are all uniujured. But the water was several feet deep in the barracks.

The abore facts are derived from a letter from the Deputy Commissioner of Peshawur.

A similar flood occurred in 1841.
There is no doubt that the present flood, like that of 1841, was caused by landslips among the mountains blocking up the river iu the upper part of its course. The obstruction suddenly giving way
after a great accumulation of water had taken place produced the results mentioned.

The obstruction in 1841, was formed somewhere below Hasora. The spot was risited by the late Messrs. Winterbottom and Agnew, a year or two after the flood.

The water on that occasion is believed to lave risen 800 or 900 feet above its usual level at the landslip, and the stream is said to have been stopped as far back as to Gilgit, or mearly as far.

In 1841 a Brigade or Division of the Sikh Army was encamped near Attock when the flood took place, and was swept entirely away. On the present occasion it is understood that the loss of life has not been great."

The Librarian submitted his usual monthly report for August, 1858.

Library.

The following books have been added to the Library during the month of August, 1858.

Presented.

Journal of the Indian Archipelago and Eastern Asia, Vol. II. Nos. 2 and 3, 2 copies.-By the Editor J. R. Logan, Esq.

Madras Journal of Literature and Science, January to March, 1359, Vol. III. No. 6.-By the Madras Literary Society.
Proceedings of the Academy of Natural Sciences of Philadclphia, January, 1858.-By the Academy.

Report (20th) of the Proceedings of the Calcutta School-Book Society, 1857.-By Babu Rajendralal Mittra.

Ditto (Half-yearly) of the Chamber of Commerce, 31st May, 1858, 8vo. - By the Chamber of Commerce.

Ditto (12th Annual) of the Grant Medical College, Bombay, Session 1857-58.-By the Govt. of Bombay.
Selections from the Records of the Government N. W. Prorinces, Mr. Thomason's Despatches, Vol. II. Calcutta, 8vo.-By the Govt. of India.
Ditto ditto ditto Part XXXI. 2 copies.-By the Same.
Ditto ditto of the Goverament of Bengal, No. XXVIII.-Bri the Govt. of Bengal.
Vividhartha Sangrala, No. 49.-By Babu Rajendratal Mittra.
The Oriental Caristian spectator for July.-By the Editor.

The Caleutta Christian Observer for August, 1858.-By the Editor.
The Oriental Baptist for August, 1858.-By the Editor.
Erlauterungsblatt zum Relief des Monte-Rosa und Seiner Umge-bungen.-By Herr. II. Scillagintweit.

Bijdragen tot de Taal-Land-En-Volkenkunde van Nederlandsch Indie, Deel I. Nos. 3 and 4.--By the Academy.

Correspondence between the British Indian Association and Government, pamphlet.-By the Secretary B. I. Association.

Jourual of the Statistical Society of London, June, 1858, Vol. XXI. Part II.-By the Society.
Moore, (F.) Description of some new species of Lepidopterous Insects from Northern Iudia, pamphlet.-By the Author.

- A Monograph of the Asiatic Species of Neptis and Athyma, pamplilet.-By the Author.

Ratnavalı an Iudian Drama in Bengali, by Ramnarain Pundit, pamphlet. - By the Raja P. C. Sing.
———An English Translation of the same, by M. M. S. Dutt.—By tife Same.

Werken van het ke Institut voor Taal en Volkenkunde, van Nedarlandsch Indie, 2 Affeeling, Amsterdam, 1858, 8vo.-By the Royal Institution of Netherlands.

Exchangcd.

Athenæum for May, 1858.
Annalen der Chemie und Pharmacie, April, 1858.
London, Edinburgh and Dublin PlilosopLical Magazine, No. 102, for Junc, 1858.

Purchased.

Annals and Magazine of Natural History for June, 1858, No. 6.
American Journal of Science and Art for May, 1858, No. 75.
Annales des Sciences Naturelles, Tome VIII. No. 1.
Belanger's Voyage Indes Orientelles, Parts I. to VIII.
Comptes Rendus, Nos. 19 to 22.
Dumeril's Histoire des Reptiles, Vols. 6 and 7, Parts I. II. VIII. and IX. Plates for Vols. 6, 7, 8, 9 and 10.

Deutsches Wörterbuch, Vol. II. Part 6.
Journal des Savants for April and May, 1858.
Literary Gazette, Nos. 2157 to 2160.
Priusep's Spays, Vols. I and II, 8vo.
Rerue des Deux Mondes, 15th May and lst June, 1858.
——_ de Zoologie, No. 4, 1858.

Voigt's (J. O.) Hortus Suburbans Calcuttensis, 8vo. Calcutta, 1845. Wyld's Map of India.
Wustenfield die Chroniken der Stadt Mekka, Band III. Liepzig, 8 ro.
Iconographie Zoophytologique Deseription par localites et terrains des Polypiers fossiles de France et Pays environnauts par II. Michelin, Paris, Plates.

For October, 1858.
The Monthly General Meeting for October, was held on the 1st instant.

The Hon'ble Sir James Colvile, Kt., President, in the chair.
The proceedings of the September Meeting were read and confirmed.

Presentations were received-

1. From the Government of India through Mr. Secretary Edmonstone, copy of a Persian work published by Dr. Polock the physician of the Shah of Persia, relating to the diseases prevalent in that country and their treatment.
2. From the Hon'ble the Court of Directors through the Government of Bengal, photographic drawings of the Gol Goomuz at Beejapore.
3. From Baboo Rungolal Banerjee, a copy of his Bengalee Poem Pudinini.
4. From Mr. Theobald, Junior, through Baboo Rajendra Lal Mittra, certain coins as described by the Baboo in the following note.
" Mr dear Gour,-Sometime ago Mr. 'Theobald, Junior, left with me 7 silver coins for presentation to the Asiatic Society, if I thought them worthy of its acceptance. I find the first 3 to belong to the Shah Kiugs of Saurashtra, No. 1 being of Vira Dama son of Dama Shah, No. 2 of Atri Dama son of Rudra Shah, and No. 3 of Bisva Shah, son of Bhathri Dama. The Society possesses no specimens of these coins and they will therefore be useful additions to its cabinet. They have been figured in the Journal and in Mr. Thomas's Iudian Antiquities, Vol. II. p. 85.

Nos. $4 \& 5$, the last in triplicate, are very like the silver dabs found by Major Kittoe, Mr. Thonas and others in Gangetic India, and are supposed to have belonged to Hindu Kings of the 2d and 3 d centuries before Christ. They bear no inscription, and their legends are indistinct. They were I understand found in Guzerat. Yours truls, (Sd.) Rajendra Lal Mittra.
The Council reported-

1. That the name of Baboo Roma Nanth Banerjee has been removed from the list of Members, under rule 13 of the Society's Code of Bje laws, for non-payment of arrears.
2. That they have granted the Asst. Secretary and Librarian Baboo Gourdoss Bysack leave of absence for 6 months upou urgent private affairs, and appointed Baboo Bhobany Persaud Dutt to act for him during his absence.

Confirmed.
Communications received-

1. From Baboo Radha Nauth Sikdar, an Abstract of the Meteorological Observations taken at the Surveyor Gencral's Office iu the month of May last.
2. From Mr. James Burgess, a paper on Hypsometrical Measurements by means of the Barometer and Boiling Point Thermometer. This paper gave rise to considerable discussion chiefly maintained by Colonel Strachey, Dr. Thomson and the anthor.
3. From Baboo Hori Sunker Dntt, Deputy Inspector of Schools, Bancoorah, through Mr. Hand, the Inspector of Schools, South Bengal, the following letter accompanied by a brick beariug a Bengal Iuscription.
" I have the honor to submit for your consideration a brick which I have found in the ruins of the old temple of the Devee Basoolee at Chhatna in Zilla Bancoorah. This Devee is alluded to in the Poems of Chundee Doss, one of the well known bards of Bengal, and this excited my curiosity to pay a visit, on one occasion of my going to Chhatua on duty, to the scene of events now so popular with numbers of our countrymen. Here the villagers pointed out the place where Chmodee Doss's dwelling stood, the stone upou which he used to sit and compose his songs, and the old site of the
temple of the Goddess to whose worship he was devoted. These no doubt had some peculiar charms, and I was still more delighted when I observed that almost all the bricks of the temple bore inscriptions which I at first could not read. I therefore looked for an entire brick, and at last found the one I now submit for your consideration.

My main olject in thus intruding upon your time is to have the inseription deciphered.

I must inform you that I tried if possible to decipher it. I think I have partially inade out some thing, but am very diffident as to whether my conjectures are correct.

The characters at first appear much like Deva Nagor, but I think they are old Bcngali.

What I have been able to make out is this:-

সাঃ ছাদ্মা নগরর়শ ख:যুতরুবায় শক $289 ৫$

The temple seems from this to have been built by the Rajal of Chhatna.

I have much doubt about ग़
If these are old Bengali characters, I would be happy to have the other letters of the alphabet, in order that the great change which those characters have undergoue during the last three hundred years, may be noticed.

$$
\begin{aligned}
& \text { I have, \&c., } \\
& \text { (Sd.) Hori Shunker Dutt. }
\end{aligned}
$$

Baboo Gourdoss Bysack stated that the characters of the iuscription were Bengalee of the period of Chaitanya Deva, and very like those of Lassen's fac simile edition of the Yajnadattabadha.

They differ from the modern Bengati in the letter $\overline{\text { র being written }}$ like $\overline{\mathrm{J}}$ without the dot at the bottom, and the latter being represented with a dot in the centre. This practice still obtains in Coch Behar and is not unknown in Rungpur. The letter 䒺 is very peculiarly formed and its duplication is indicated by the addition of the figure 2, and not as usual at present by the repetition of the letter itself. This mode of duplicating the Sri was not, however, uncommon at the time when the brick was inscribed. In some of the Nepalese coins of the 16 th and 17th centuries figured by Marsden in his Numismata Orientalia, it occurs very frequently, and in a
coin of Rajrajesswari Devi the letter Sri has the figure 3 after it to indicate its triplication. The date of the inscription 1475 Saká= $15 \% 3$, A. C. has been correctly read by Babu Hurrishanker Dutt, but the name of the party who dedicated the temple is not Sri Iutara. Raya as read by him, but Sri Sri Utava Raya. The reading of the Inscription is

or in English.
The doubly prosperous Utava Raya the owner of the doubly prosperous city Chhatana, Saka, 1475.
4. Lieut.-Col. Strachey read a memo. by Capt. H. Strachey on what is known of the proceedings and fate of Herr. Adolphe Schlagintweit.

For November, 1858.
The monthly general meeting of the Society was held on the 3rd instant.

Col. R. Strachey, Vice-President, in the chair.
The proceedings of the last meeting were read and confirmed.
Presentations were received.

1. From the Secretary of the Royal Geographical Society, the 27 th vol. of the Society's Journal.
2. From the Secretary of the Ceylon Asiatic Society, part \simeq of that Society's Journal.
3. From the Secretary American Academy of Arts and Sciences, Menoirs of the American Academy, New series vol. V. p. II., and vol. VI. p. I.

Letters were read.

1. From Dr. Row intimating his desire to withdraw from the Society.

Communications were received.

1. From the Govermment of Iudia through Mr. Secretary Chapman forwarding for such use as the Society may think fit, a paper ou

Education in China prepared by Mr. Alabaster from information communicated by Commissioner Yelı.
2. From Mr. Hall a paper on Profussor Wilson's 3 d edition of the Sauscrit Dictionary.
3. From Captain Tenant, Engineers. A reply to Archdeacon Pratt's recent paper on the Indian meridional arc.
4. From Major II. L. Thuillier the following extract from a letter from Captain Tenant relatiug to the Comet.
"As the comet now rapidly leaving us has been generally identified with the one Mr. Hind expected, (which it is not,) and has in consequence cansed an uusual interest to be taken in it, perhaps the elements of its orbit will be interesting to some of your Calcotta friends.

Perihelion passage, Sept. 2sth, 16h. 16m. J.
Lougitude of perihelion, $16 \cdot 30^{\prime}$ t."
Do. Ascending node, 168* 25' $11 .{ }^{\prime \prime}$
Inclination, 66. $20^{\prime} 35$."
Perihelion distauce, $\quad 0.5752,358$.
Motion retrograde.
These differ totally from those of Mr. Hind's expected Comet, that of 1556.

I was unable to get any observations till the 5 th October, and have ouly just got enough to get this orbit, but I believe this orbit will be very fairly close. I have seen no English orbit and I doubt if any has yet reached India."

The Secretary read the following extract from a note addressed to him by Archdeacon Pratt on the same subject.
"This comet is the same as that seen by Dr. Douati at Florence in June last. Mr. Hind hiss published one or two letters in the Times giving the results of his observations upon it. It is not, as was at first hoped, the 1556 or Charles Vth comet, which may yet come. From 1858 to 1861 is the rauge which Mr. Hind Las given it.

Regarding this, or Donati's comet, Mr. Hind shews, in his letter dated September 13th, that on the 5th and Gth of October it would be near Arcturus-which you maty remember we observed-and that it would pass its descending node near Y'enus-which also we
saw here plainly enough on the 17 th or 18 th of October. The motion of the comet is retrograde; for Venus is come to this side of the sun from the opposite side by the left, whereas the comet is come round by the right. The motion round the sun is consequently opposite to that of Venus and the other planets. This is fatal to its being Charles V.'s comet, if, as I believe is the case, that comet's motion was direct. No perturbations from the Planets could account for such a change."
5. From the Goverument of India through Mr. Secretary Beadon, transmitting 3 copies of a letter from the Government of the N. W. Provinces to the Secretary with the Governor General with enclosures relative to Mons. Adolphe Schlagintweit.

From Major H. Ramsat, Commissioner of Kumaon Division, to W. Mitr, Esquire, Sccretary to Government, North Western Provinces, No. 335, dated Nynee Tal, the 6th September, 1858.

Sir,-When the Messrs. Schlagiutweit left this province to prosecute their scientific inquiries in more northern countries, several Kumaon men accompanied them. Most of these men returned long ago, but Hurkishen came last of all, and after making inquiries about Adolphe Schlagintweit, he requested me to settle his accounts and receive his instruments.
2. As Captain Strachey had some knowledge of the country from which Hurkishen had returned, as also of those parts where be was to carry out further observations, I requested that officer to prepare a statement showing all that could be gathered from Hurkishen-the instruments he had received from A. Schlagintweit, and how disposed of, also the expenditure of the money he had received. Captain Strachey, at cousiderable trouble, has lindly prepared the enclosed memorandum with map to explain the known and probable route of the missing traveller, and I solicit the favor of your submitting it for the orders of the Right Hon'ble the Governor General.

I solicit orders regarding the pay of Hurkishen recommended by Captain Strachey, as also in reference to the collections and instruments left at different places.

Memorandum.

1. Adolphe Schlagintweit crossed the Para Lasa (Pass) from Garzha (viâ Lahaul) of Kalla iuto Rapslin of Ladak, i. e. from India to Tibet, on the 31st of May, 1857, taking with him
2. Mahomad Amin, native of Yarkund, guide, \&c.
3. Yahudi ditto, Assistant to No. 1.
4. Mahomud Hasan, of Peshawar, Moonshee, \&e.
5. Abdnl of Kashmir, domestie servant, \&e.
6. Ghos Mahomud, of Moradabad, ditto.
7. Murli, of Bhagsu, Chuprassy, \&c.
8. Monla Baksh, of Moradabad ditto, and others.
9. The first of these, Mahomud Amin, was a person of questionable antecedents, nominally a merchant trading between Yarkund and Le, but said also to have acted in the eapaeity of a gragr-robber on the road between those phees. Beiner at Le in 1850, he was arrested by the Dogra Thannadar Basti Ram, for debt, on the suit of sundry merchants or for other reasous, and released on the appilcation of Herman and Robert Sehlagintweit, who engaged him to act as guide for their journey towards Khotin in the summer of that year (their account of whieh is on reeord). On their return to India in the autunn, he was discharged and remained at Le, when he soon got into tronble again with the Dogra Govermment.
10. Some say that Agents of the Chinese Government in Yarkund having heard of his bringing European travellers across their frontier (which is high treason in their Code), offered a reward of 1,000 Rupees for his apprehension, aud perhaps coerced some of the Kashnir residents at Yarkund to work upon their friends in Ladak and Kashmir for the same object, which Gulab Siugh and Basti Ram possibly also turned to a mereantile transaetion. However this may be, Gulab Singh having ordered his arrest and threatened to hang him soon after the Sehlagintweits' departure, he fled from Ladak into Kulla, where Adolphe Schlagintweit found him at Sultampore in April 1857. There had possibly been some previous arrangement between them. Any way Adolphe Schlagintweit again entertained him as Interpreter, Guide, and Baggage Master for another journey into Turkistan. As a specimen of his veracity, it may be mentioned that he informed deponent
(Hurkishen) that he was to have a monthty salary of 2,000 Rupees whilst travelling mith A. Schlagintweit, and a monthly pension of 1,000 Rupees after he had bronght him back safe to India. Major Hay, A. C. of Kulla, probably knows more of Mahomud Amiu's history.
11. No. 2, name not known to deponent (Hurkishen), being commonly called " Yahudi," i. e. "The Jew," was a native of Yarkund and dependent of Mahomud Amin: they had some baggage poneys with them and four Turkish grooms or baggage men, all of which were engaged by A. Schlagintweit for the jonruey. No. 3, Mahomud Hasan, of Peshawar, was engaged by A. Schlagintweit when he was at that place in December, 1856, as a Moonshee, assisting also in scientific observatious and accounts.
12. The last documentary evidence of A. Schlagintweit's movements forthcoming liere, consists of a letter to Hurkishen from Changeheumo of Ladak, 14th June, a postscript to the same stating that it was not sent till the 24 th idem, and oue or two notes for sundry payments of money of the latter date. The letter consists chiefly of instructions to Hurkishen, and of Adolphe Schlagintweit himself, only says, "I am quite well, and at preseut all things seem to go on pretty riglit," but as it also mentions two "Dâk parcels," one for Lieutenant Charles Hall (A. C. of Bhagsa?) sent by the same despatch for transmissiou to Kangra. Other persous have no doubt received letters from him with particulars of his history up to that time.
13. 'These documents were brought from Ladak by the chuprassies Murli and Maula Baksh (Nus. 6 and 7 of the above list) who joined Hurkishen at Kharling of Garzlia on the 20th of July, 1S57. It appeared from the statements of these men (made to Hurkisheu) that before they left A. Schlagintweit, the Moonshee Mahomud Hasan had deserted, taking with him one of his Master's (or Mahomud Amin's) poneys, some little money, and other articles belonging to A . Schlagintweit. The chuprassies were directed to overtake him if they could, recover the property, and make it over to Hurkishen in Kullu, which they succeeded in doing, but leaving the Moonshee himself in Ladak, whence he probably made his way to Kashmir and Peshawar. He gave them a letter for his Master,
which they brought to Hurkishen and is still extant among his papers, written in pencil in broken Thglish, excusing his sudden departure on the score of inability to endure the hardships of such a journey any longer, and admitting a balance of $7: 2$ leupees, of which he gave the chuprassies his account, but did not pay the money. It must be observed that A. Schlagintweit makes no allusion to all this in his letters to Hurkishen; from which it may perhaps be inferred that he did not attach much importance to the Moonshee's desertion.
14. Hurkishen, when at Deyra in November, 1857, gathered from Captain Montgomery of the Trigonometrical survey and his native doctor, that they had been in Ladak during the past summer, and that A. Schlagintweit lad left Le before their arrival there, and they knew nothing more of him.
15. From the locality of his last despatch, Changchenmo, (which may be seen in my map, at the N. E. end of Ladak) I infer that he crossed the Turkish water shed to the east of the Karakorum Pass, perhaps to Sugat, on the head of the Karakash River, and thence following the route taken by his brothers the year before, towards Kilian and Klooten.* It appears that he had laid in a stock of merchandize in India, with the view of facilitating his journey by trade or the appearance of it.
16. I hear of him after this through the Bhotiyas of Iwar, who got their information from Kashmiris of Ladak at the Gar fair in the autumn of 1857. It was to the effect that A. Schlagintweit had succeeded in reaching the margin of the iuhabited comutry at the foot of the mountains; there he went out from his camp some way to reconnoitre, and in his absence the Guide, Mahomud Amin, absconded with most of the bagrage and cattle towards Yarkund. A. Schlagintweit being left helpless, sent back some of the Ladak baggage-men he had brought with him with a letter or message to the Thannadar of Le, requesting him to send assistance in men, cattle, provisions, and money; whether for the purpose of continuing lis attempt to penetrate into Turkistan, or merely to return to Ladak with less hardships, does not appear. When his messengers

[^11]arrived at Le, they found Basti Ram's son in authority there, the Thannadar limself being away in Kashmir. The son is said to have refnsed the required assistance: more likely, in fact, he was too silly and timid to act upon his own responsibility, and referred for instructions to his father or Gulab Sigh, in Kashmir, at the expense of great delay and danger to A. Schlagintweit. The information gathered by the Iwaris at Gar goes no further, and is not very reliable even so far: indeed it is a question whether this story may not be an exaggerted mis-statement of the desertion of Mahomud Hasan in Ladak.
10. The next accounts are derived from two or three letters which have been published during the last few months in the Delli Gazette, from a correspondent of that paper, apparently at Simla, and deriving his information from merchant travellers from Ladak. From these it may be gathered that Adolphe Schlagintweit passed the winter of 1857-58 at the foot of the mountains on the border of Khoten, on this side of the Chinese out-post, among the same tribe of shepherds perhaps who gave his brothers a friendly reception the year beforc. On his arrival there, the Provinces of Kashgar and Yarknnd were in a very disturbed state from one of those invasions of the Turks from Khoknd which have been recurring periodically every 10 or 20 years, during the past century.
11. On these occasions the forage invaders being joined by the Turks of the country, usnally succeed in driving the Chinese Garrisons into their forts, and subverting the Celestial Government for a time, till re-inforcements come from the Chinese Provinces further east, when the rabble of Turks soon become disorganized, the Khokandis retire to their own country, and the people of Yarknud and Kashgar are left to settle their own accounts with the Clinesc, which is sometimes done by wholesale massacres of the Turks of those cities. The invaders are commonly headed by one of the Khojahs of Audejau, of the family which ruled at Kashghar, before the Chinese couquest (about 100 years ago), and who still aspire to the recovery of their former dominions. An unsuccessful invasion and rebellion of the 'Turks, as here described, occurred when I was in Ladak in 1817-48; on the present occasion the result is said to have been the same.
12. So long as the Chinese were in the ascendant, Adolpho Schlagintweit would have little chance of penetrating the inhabited country to any distance : they have out-posts on all the roads across their frontier; from the rarity of population and traflic, individuals are easily marked; and Adolphe Schlagintweit would hardly be able to barbarize himself enough to bear scrutiuy. An European traveller attempting to pass any of these out-posts would probably be stopped and turned back, and extra precautions taken against him all along the frontier, but if detected after peuetrating the inhabited conntry to any distance, he would more probably be murdered. It is not likely that Adolphe Schlagintweit would stay more than one winter in the demi-deserts this side of Khoten, nor that if still there he would not have opened communications with Ladak and India; it is probable therefore that he took the opportunity offered by the temporary subversion of the Chinese authority to enter Khoten or Yarkund. But to go far or stay long there he could hardly avoid the notice of the insurgent Turks: the natural iupulse of these people would be to rob and murder an European, but in the actual conjuncture, they might perhaps welcome him as a common enemy of the Chiuese, aud the mania of travel or adventure might prompt Adolphe Schlagintweit to offer himself in that capacity. In either case when the Chinese got the upperhand again (as they are now said to have done), they would first regain possession of their southern frontier towards Ladak, aud Adolphe Schlagintweit would probably retire with the iuvading Turks through Kashghar into Khokund.
13. The relations of the Lnglish with Khokund have been very slight, but so far as they go, wholly amicable, and on the strength of them, or of his own antecedents in Yarkund, Adolphe Schlarintweit might possibly meet a friendly receptiou there : on the other hand the Khokandies are (as usual with the Turks) on bad terms with all their neighbours, iucluding the Russians, who are steadily encroaching on their North-West froutier ; and tais would add to his difficulties in leaving their country again.
14. The ways out of Kholund aro eastward to Ili and South. Eastward to Kashghar, both completely stopped by the Chinese; Southward to Sirkol Badakshan and Cabul, but physically and
politically this would be most difficult; South-West to Samarkund and Bukhara, and Westward to Khiva, both countries probably hostile to Khokund, and certainly so to the British; an European, and especially an English traveller, would find safety there only from Russian protection; lastly to the Rassian out-posts on the North-West and North, Fort Aralsk near the Aral and Ak-Mnsjed on the Sir (Jaxartes): once there, he would be in the civilized world again, under a friendly Government, and if he ever re-appears, I think it is most likely to be this may, which would lead him to Europe and not back to India. It would be futile to discuss the chances of his ultimate escape: they bang merely on the caprices of the vilest barbarians of Central Asia.
15. To return to India: some time in May 1857, before Adolphe Sthlagintweit left Garzla, he detached a party consistiug of

1. Ramchunder, of Lahore, Collector and Observer.
2. Gulab Sing, of Mandi, Draftsman and Assistant to Nu. 1.
3. " "Compassy.
4. " ,, Ditto.
5. " "Gardener and Botanical Collector.
6. „of the Sultanpore Thannah, Chuprassy.

These under No. 1 mere sent from Khardong down the Chamendra Bhogals by Kishtwar into Kashmir, with orders to turn np at Jhelum and there wait for Adolphe Schlagintweit himself or his further orders; as before mentioned they met the surveyors under Captain Moutgomery in Kashmir, and this is the last, deponent has heard of them.
16. On his departure from Garzlia, Adolphe Schlagintweit also left 7 Nagina, of the Sultanpore Thannah, chuprassy, in charge of collections and manuscripts deposited in the Assistant Commissioner's house at Khurdong.

This man was afterwards joined by 8 Moula Baksh, No. 7 of the first list, one of the two chnprassies who returned from Ladak in the end of July, and after taking on letters to Sultanpore (as alrealy mentioned) brouylt back money (200 Rupees) for expenses at Khardong. Nos. $7 \& S$ were ordered to remain at Khardong till receipt of further orders from Adolphe Schlagintweit and to take
care of his collections there till they conld be sent down to Kaugra after the rains. Deponent knows nothing more of them.

17. The 3rd party consisted of

9. Hurkissen Tewari, of Almorah, Native Doctor, Observer, and Collector.

10. Krishna	$"$	ditto,	Assistant to No. 9.	
11.	Panchum	$"$	Paori,	Compassy.
12. Magna	$"$	Kullu,	ditto.	
13. Sirtaj	$"$	ditto,	ditto.	

The first of whom No. 9 is the person from wham most of this iuformatiou is derived. They parted from Adolphe Schlagiutweit when he crossed the Para Lassa into Tibet, on the 31st May, 1857. Duriug the month of June, they were employed in travelliug, making observatious and collections down the Bhagga valley by Shigri aud Kaksan back to Khardong, where they remained till the return of the two Chuprassies from Ladak, 20th July. In pursuance of the instructious then received, they proceeded by Koksar and Shigri again, across the Kulzun-La into S. Pite, where they were joined in August by 14 Murh, No. 6, of the first list, who after leaving the despatches from Ladak at Sultanpore, brought back a supply of money (500 Rupees). The party then continued their journey through Hangrang and Kundur, up the Baspa valley across the Rupin Pass into Rawain, and thence to Deyra, arriving 11th October. Hurkishen hearing a bad account of the road across the Rupin, sent the Chuprassy Umrli, with the pouey recovered from the ruu-away Moonshee Mahomud Husan, round by lower Bischr, in spite of which the animal died on the road at Rampore, as certified by a letter from the Raja of that ilk.
18. Hurkishen's instructions were to go on to Futtehgurh, and expect Adolphe Schlagiutweit there by the end of October, but the disturbed state of the country in that directiou rendering this impossible, he remained at Deyrah, making observations, repairing instruments, and expecting letters from Adolphe Schlagiutweit till the 12th of December. Getting no uews of his master, he the: deposited his collections in the Surveyor General's Office, discharyed some of his Establishment (Nos. 12, 13, and 14), and proceeded
to Paoree, 25 th December, 1857, and Almora, 1st January, 1858, in hopes of there getting some information or instructions.

He remained in Kumaon, making many fruitless inquiries, till the 1Sth February, and then returned to Paoree 2nd, and Deyra 17 th March, 1858.

Finding no news of Adolphe Schlagintweit, he then left the rest of his collections and some broken instruments in the Surveyor's Office, dismissed the rest of his Establishment (Nos. 10 and 11), brought his observations and collections to an end, and returued to his home at Almorah, in April 1858.

In
he wrote for information, about Adolphe Schlagintweit to the Chief Commissioner's Office in the Puigat, and the answer of the Secretary, dated Lahore, the 1858, states that they cau give him none.
19. 1st.-Hurkishen left in Gorgha in July, 18.77, 2 cases of collections, containing
with the Reverend A. W. Heyde, a German Missionary settled at Kyelang (near Khardong.)

2nd.-In the Surreyor General's Office at Deyra, in December, 1857,

7 cases of Geological Specimens, viz., 3 Rocks and Fossils.
2 Earth and Sand.
2 Water.
1 Ditto Botanical ditto ", Plants.
1 " Zoological " Birds.
in all, 9 cases and about a cart load.
$3 r \cdot d$.-Instruments \qquad 1 Barometer, broken.
1 Thermometer ditto.
4th.-Ditto 1 'Tent.
1 Boring-tool.
1 Hammer.
5th. - He has got with him at Almorah Instruments 1 Barometer, damaged.

2 Prismatic compasses.
1 Pocket ditto.
1 Strike and dip compass, German.

1 Thermometer.
1 Ditto broken.
1 Ditto ground.
2 Ditto dry and wet buib.
1 Measuriug glass.
1 Ditto rod.
3 Ditto tapes.
1 Sundial.
1 Watch.
1 Magnifying glass.
Pipers 2 Sheets of map.
5 Books of observations and references of eollections.
1 Ditto atceounts.
1 Ditto ditto, Persiau, of Mahomed Hossein.
l'eshawri, and other papers.
6th.-One case of Surgical instruments (received from the Almorah Dispensary).

2 Compasses Tripods.
1 Hammer.
1 Gun aud bullet Mould.
2 ", " Bags.
1 Inkstand, \&e.
1 Chuprass.
20. The observations appear to have been regularly kept, accordiug to Schlagintweic's instructions, from Para-Lassa 31st May, to Paree 25th Deember, 1857, and again in a fragmentary way between Patoree and Deyra from ?id to 17 th March, 1854.
21. I have examined Hurkishen's accounts and fiud them regularly kept. He received au advance of 400 Rupees from A. Schangintweit on the 31st May, and 500 Rupees by order on Sultaupore, cashed in August 1857, together 900 liupees, the whole of which seems to have been fairly expended and duly accounted for. This covers Hurkishen's own pay at 30 Rupees per mouth, up to the end of December, 1857. Hurkishen himself states that A. Sehlagintweit promised him a further payment of 2. Rupees per month,
making lis salary up to 55 Rupees, if, on the winding up of his affairs, his work should be found satisfactory; but there is no allusion to such a promise in any of the documents produced by Hurkishen, and one of them distinctly states his pay to have been raised to 30 Rupees, from the 1st of May, 1857, Hurkishen himself adinitting that it was only 25 before that. I should myself consider 30 Rupees as adequate to the style of his work. Since the beginniug of January, 1858, Hurkishen has done next to nothing in the way of observation or collection, and has been for a large part of the time at his own home; on the other hand, he has been put to some incouvenience aud kept out of other employment. For this I think that a sum of one hundred Rupees (100) would be a fair remuneration. There also remains due ten Rupees (10) to the Assistant Krishua, No. 10 of the 2ud list, for wages from 1st December 1857, to 5th Jauuary, 185S, at nine Rupees per month, and ten Rupees (10) to Compassy Punchum, No. 11 of the same, for wages for March and April, 1858, at five Rupees per month.
22. I am of opiniou that if Adolphe Schlagintweit does not return to India, or at least to Ladak, within the next three months, his return this way should be no longer expected; that any of his establishments still extant should be finally discharged, and their accounts closed, and that all collectious, manuscripts, and graduated instruments should be got together, sealed, packed, and sent to Eugland, to be kept at the Loudon Custom House unopened till called for by his brothers Herman and Robert (from
> * Behrew. Strasse No. Berlin*), who should be at the same time advised to make arrangements for receiving them. This is the best way of recovering some value from what has cost the Govermment much money, of furthering the interests of science, and doing justice to the Schlagintweits themselves. I think that all graduated instruments whatever should be sent home, because the final reductions of many observations depend upon the correction of instrumental errors which are sometimes ascertainable only by a subsequent reference to the instruments themselves, some useless things may be included thus, but in the abseuce of the Schlagiutweits, it is safer to make the rule absolute and send all.
23. It would be very desirable to have all the collectious repack-
ed for transmission to Englaud, as the original packing may in many cases be insufficient, but as this would involve much risk of displacing labels, \&c., (which might impair the scientific value of specimens) it should be done ouly by the individuals who collected them, if forthcoming; by any other hands, the packing should be confined as much as possible to the cases themselves, and avoid any turning over of the contents. Every thing should be completely closed in soldered tin-plates.
24. With this view, I recommend that the iustruments and papers specified in list No. 5, be takeu from Hurkishen, sealed, packed, and deposited in the Commissioner's Office at Almorah, against further orders, and himself and two men then dismissed after payment of the 120 Rupees due to them (as shown above), the things mentioned in list No. 6 (of very little value) being disposed of as the Commissioners may direct. It is a question whether after this Hurkishen should not be sent to Deyrah, to repack the collections which he left in the Surveyor's Office there, being remunerated for the job by a further payment of 50 Rupees or so. Colonel Waugh might be consulted on this point.
25. I am further of opinion, that Govermment should eall upon some of their officers in the Purjaub, to report any information they may be able to get about Adolphe Schlagintweit, and to take measures, such as suggested above, for the preservation of any collections, manuscripts, and instruments that may come within their reach, the whole of which things should be sent after the rains to the Secretary to Government at Alliahabad, who could make further arrangements for their transmission to England in one batch. The parties best to be consulted are-

The Deputy Commissioner at Kangra.
His Assistant in Kullu.
The Deputy Commissioner at Simla.
Any Government Agent in Kashmir or Ladak.
The Surveyor General at Deyrah.
His Assistants in Cashmir and Ladak.
The Reverend A. W. Heyde, German Missionary at Kyelavg, in Lahaul of Kulln.
Maharaja Raubir Sing of Kaskmir, and Billah Sah, his Collector of eustoms in Ladak.
26. If Nasir Khan, native of Bajour, domiciled at Guzerat, and trader between Turkistan and India, be forthcoming in Ladak, he would be about the best man to entrust with any further inquiries in Turkistan itself; but if any such commission were given to him, it should be quite privately. I gather from the Delhi Gazette, that this person passed from India into Ladak a month or two ago, with the intention, no doubt, of going on to Yarkund.

> (Signed) Henry Straciey, Captain, 66 Goorkah Regiment.

Almoraff, 20th August, 1858.
P. S.-Since writing the above, I have met with the following in the Bombay Standard of the 17th July, 1858: "By letters from Simla of the 3rd instant, we learn that an expedition was about to be organized under Lord William Hay, to ascertain, if possible, the fate of llerr Adolphe Von Schlagintweit."
(Signed) Henry Strachey, Captain, 66th Goorkah Regiment.

Delhi Gazette, June, 1858.

No. 1.-News has been received of Mr. Schlagintweit, who is said to have passed his winter at a place called Askilung, about five marches on this side of Yarkund, and near Aktak. It is possible that the Government is wide awake, and that Mr. Schlagintweit was deputed to that part of the world by competent authority, and that he is duly protected; if this be not the case, the news of his safety should be regarded with great caution, and the persons who have brought the news should be very closely questioned. The news has come from Leh via Zautkar, and the secrecy of Government may be so great that the same parties may have conveyed letters from Mr. Schlagintweit himself.

Delhi Gazette, July 10, 1858.
No. 2.-News from Yarkund has been received by us from a friend, upon whose information we can entirely rely, he says-"The passes from Ladak are open, and news has been received that the army of Kathai (China) engaged the force sent from Indijan (Kohkan) and defeated them, causing them to return to their own country.

From the present meagre account, the encomnter does not seem to have been very bloody, in fact it seemed to be more an arrangement between themselves.

Messengers of distinction have been passing from the Shassan Court to Yarkund, holding secret conferences with the Thamnadar at Leh, the meaning of which did not transpire. I am sory to tell you that no news whatever has been received of Mr. Schlagintweit or the man Mahomed Amin who conducted him to that country. The news formerly being, that Mr. Scllagintweit had identificd himself with the Indijan party, which party has been conquered by the Chinese, would place him in an awkward position, and as he would have beeu unable to pass the Chinese posts to return to Leh, he would have, of necessity, been obliged to retire with the beaten army towards Kolikan."

$$
\text { Delhi Gazette, July 17, } 1858 .
$$

No. 3.--A merchant named Nasir Khan, came to Hindoostan about two years ago nominally on a pilgrimage to Mecca, where ho proceeded. He returued at the begiming of the hot weather to Sultanpore in Kulu, where he took up his residence, some of his people joining him from Bombay, and others viâ Calcutta. He has remained several months in Knlu, and was narrowly watched by Major Hay, who was of opinion that he had other motives than those of trade.

Being anxious apparently to return to Yarkund, and wishing to know the exact state of that country, he paid a man 15 Rupecs to proceed to Ladak before the passes were cousidered fairly opened. About a fortnight ago, this messenger brought him a letter informing him that the Chinese force had driven back the troops of Indijan, which attacked Yarkund last year when they were ill prepared for resistance; nor are the Chinese of Yarkund allowed to assemble troops without orders from Pekin. However, the important portion of my story as regards Ruubeer Singh is to come. This letter stated that 200 of the rebel sepoys fully armed had been allowed to pass through the Kashmir territory, and had actually arrived in Yarkund!! Nasir Khan is a Patthan, and communicated this to the Native Officer of the guard of the detachment of the Police corps now stationed at Sultanpore.

Who can tell what is going on up there? I met a few days ago two Mahomedans who had arrived from Leh in 19 days, just to cross the Sutledge to Rampoor. One a Kashmiri told me, that Mr. Schlagintweit was alive, and that he had gone on to Kashgar, with Mahomud Amin, the native who accompanied him from Kulu. If true, this is a curious move for him to make, and the Chinese would certainly never allow him to return the way he went to Yarkund.
(True copies)
(Signed) W. H. Lowe,
Offy. Assistt. Secy. to Govt., Nurth-Western Provinces.
Mr. H. Blanford read a paper on the Cretaceous rocks of Southern India.

The Officiating Librarian submitted a report of the additions made to the Library during the months of September and October last.

Librarf.

The Library las received the following accessions during the months of September and October, 1858.

Presented.

Catalogue of the Government Central Museum, Madras, 4 Parts.-By the Madras Gofernment.

Appendix to the Report on the Goverument Central Museum, Madras, 8ro., Madras, 1855.-By the Same.

The White Yajur Veda, Part 3, Nos. 4 and 5.-By Albrecht Weber, Berlin.

The Oriental Christian Spectator, Nos. 8 and 9, for August and September 1858.-By the Editor.

Indische Alterthumskunde for 1857-58.-By Charles Lassen.
Abhandlungen fúr die Kunde des Morgenlandes, Band I, No. 3, 2 copies.-By the Rofal Academy of Sciences, Berlin.
The Oricutal Baptist for September--By the Editor.
The Calcutta Christian Observer for September.-By the Eitors.
Reports on the Harbour of Beitkul in Sedishaghur Bay, by Col. Cotton and Lieut. Taylor.-By the Madras Government.

Reports on the direct and indirect effects of the Godavery Amicnt in Rajahmundry, and the Coleroon Annicut in Tanjore.-Br tie Same.
Selections No. ©, from the Public Correspondence, \&c. of the British Indian Association. - By the Society.

The Annals of Indian Administration, edited by Meredith Torrnsend.By the Home Government.
Selections from the Records of the Madras Govt., No. 2 of 1854, No. 39 , and No. 45 of 1856, 2 copies and No. 49 of 1858.-By the Madbas Government.
The Oriental Baptist for October.-By the Editor.
The Quarterly Revien, Vols. 50-51-52.-By Babu Gourdoss Brsack.
Memoirs of the American Academy of Arts and Sciences, Vol. V. Part 2, and Vol. VI. Part 1.-By the American Academy.

General Report on the Administration of British India. and
Maps on the Administration Report.--By the Home Government.
Proceedings of the Royal Geographical Society of London, Vol. II. No. 3.-By the Society.

Journal of the Royal Geographical Society, Vol. XXVII.-By the Society.
Photographic Drawings of the Gol Goomuz at Beejapore.-From the Hon'ble the Court of Directors througif the Govt. of Bengal.

Proceedings of the Academy of Natural Sciences of Philadelphia.-By the Academy.
The Calcutta Christian Observer for October, 1858.-By tie Editors.
Catalogues of the Government Central Museum in Madras, British Shells, 1. Iron Ores, 1. Palacontology, 1. Descriptive Gcology, 1. Mineralogy, 1. Five Pamphlets.-By the Madras Government.

Cataloguc of Books in the Library of the Government Central Museum, Madras.-By the Same.

Reports on the Government Central Museum, Madras, and on the Government Museums at Bellary, \&c. Iron Ores, Manufacture of Iron and Steel and the Coals, 1. Report for 1853.-By the Same.

Report on the Woods of Madras, l.-By the Same.
Thirty-fifth Annual Report of the Royal Asiatic Society of Great Britain and Ireland for 1858.-By the Society.

Notice of Mr. Hugh Miller, Philadelphia, 1857.-By the American. Philosophical Society.

Le Tresor des Belles Paroles, Choix de Sentences.-Tradutes Par. P. E. Foncaux.

Bibidhartha Sangraha for Joysto.-By Babu Rajendralal Mittra.
Bijdragen Tot de Taal land-en Volkenkunde van Nedarlandsh Indie, No. 2, New Scries, 8vo.-By the Royal Society of Sciences, Netherlands.

The Precepts of Jesus, \&c. compiled by the late Rajah Rammolun Roy
by the Unitarian Society for the Propagation of the Gospel in India.-By Babu Rajendralal Mittra.

Twentieth Report of the Proccedings of the Calcutta School-Book Society for 1857.-By the Society.

Kitáb Jozabi, or Persian Work on the Diseases of Persia, by Dr. Pollock.-By the Goft. of India, Foreign Department.

Catalogue of Birds in the Museum of the East India Company, Vol. II. -By the Hon’ble the Court of Directors.

Pudmini Vopakhayan a Tale of Rajasthan in Bengali.-By Rungoral Banerjee.

Voyages d'Ilı Batoutah, Par. M. M. Defremery et Sanguinetti, Tome 4.-By the Asiatic Society of Paris.

Reports ou the Districts of Miduapore and Cuttack, by H. Ricketts.By tie Bengal Government.

Calcutta Review for September, 1858.-By the Editors.
Journal Asiatique, 'Tome XI. No. 43, April and May, 1858.-By the Asiatic Society of Paris.

Zeitschrift der Deutschen Morgen: Gescllschaft, Band XII. Heft 2, Liepzig, 1858.-By the German Oriental Society.

Purchased.

Comptes Rendus, Nos. 23 and 24 of Tome 46, and Nos. 2, 3, 4 and 5 of Tome 47, 1858.
Literary Gazette, Nos. 2161 and 2162, Old Series, and Nos. 1, 2, 3 and 4 of 1858, New Series.

Vendidad Sade, Part 4.
Sanskrit and English Dictionary, Improred from Professor Wilson, by Theodore Goldstücker, Vol. I. Parts 1 and 2.

Revuc et Magasin de Zoologie, by Mr. F. E. Guerin-Meneville, Nos. 5 and 6 of 1858.

The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Supplement of No. 103, and Nos. 104 and 105 for 1858.

Notices et Extracts des Manuscrits de la Bibliotheque du Roi, Tome 16, P. 2.
Analectes sur l'Histoire et la Litterature des Arabes D'Espagne, par. Al-Makarri. Published By M. Reinhart Dozy.

Mutanubbi Carmina cum Commentario Wahidii, Edited by Fr. Dieterice, Part 1.
L Algebre D'Omar Alkhay yami.-By F. Woepcese.
Kitab-i-Yamini, translated by the Rev. James Reynolds.
Chronique de Matthieu D'Edesse, Par. E. Dulaurier.
Ibn Abd el Hakem's History of the Conquest of Spain.-By J. H. Jones.

Bibliotheca Egyptiaea.-By Dr. H. Jolowiez.
Map of Mont Rosa, shening the Heights of its Peaks.
American Journal of Arts and Sciences for July, 1858.
Athenæum for June, 1858.
Annals and Magazine of Natural History for July, 1858, No. 7.
Annales des Sciences Naturelles, Vol. VIII. No. 2, Botanique and Nos. 4 and 5, Zoologie.

Deutsches Wörterbuch von. Jacobb Griciem und. Wilhelm Griciem, Vol. II. Part 7.

Journal des Savants for June, 1858.
Natural Itistory Review for July, 1858, No. 3.
Revieu des Deux Mondes, for 15th June and 1st July, 1858.
Westminster Reriew, No. 27 for July, 1858.
Bhobanyprosad Dutt.

Abstract of the Results of the Mourly Mfcteorological Obscrvations tuken at the Surveyor General＇s O．fice，Calcutta， in the month of April， 1858.
Latitude $22^{\circ} 33^{\prime} 1^{\prime \prime}$ North．Longitude $88^{\circ} 20^{\prime} 34^{\prime \prime}$ East． feet．
Height of the Cistern of the Standard Barometer above the Sea level，18．11
Daily Means，\＆e．of the Observations and of the Hygrometrical elements dependent thereon．

$\begin{aligned} & \text { ざ } \\ & \stackrel{\oplus}{5} \end{aligned}$		Range of the Barometer during the day．				Range of the Temprer． ture during the day．		
		Max．	Min．	Diff．		Max．	Min．	Diff．
	Inches．	Inclies．	Inches．	Inches．	0	O	0	0
1	29.801	29.887	29.732	0.155	81.6	95.1	76.8	18.3
2	． 775	． 852	． 707	． 145	85.7	96.8	77.0	19．8
3	． 730	． 833	． 619	． 181	87.1	99.8	77.1	2\％．1
4	Sunday．							
5	． 813	． 895	． 737	． 158	87.0	96.1	79.8	16.6
6	． 806	． 912	． 709	． 203	86.4	97.0	77.0	20.0
7	． 742	． 821	． 669	． 159	85.9	97.1	76.6	20.8
8	． 780	．870	． 715	． 155	86.4	97.4	77.8	19.6
9	．742	． 899	．699	． 200	85.8	96.1	76.8	19.6
10	． 705	． 801	． 609	． 192	86.7	97.8	77.6	20.2
11	Sunday．							
12	． 698	． 773	． 621	． 152	85.7	93.0	79.9	13.1
13	． 725	． 790	．639	． 151	86.1	93.6	81.0	12.6
14	． 762	． 836	． 710	.126	86.2	93.0	81.6	11.1
15	． 787	． 855	．724	． 131	86.1	94.2	80.6	13.1
16	． 813	． 882	． 758	． 124	85.2	93.4	79.1	14.3
17	． 805	． 875	.746	．129	85.9	91.1	79.1	11．7
18	Sunday．							
19	．768	．854	． 685	． 169	88.7	101.6	78.8	29.8
20	． 757	．831	． 690	.144	88.0	99.0	80.0	19.0
21	． 789	． 859	．729	.130	87.3	97.0	81.0	16.1
22	． 830	． 920	． 766	． 154	87.0	96.4	80.8	15.6
23	． 763	． 860	． 660	． 200	88.6	95.7	79.8	19．9
21	． 681	． 756	． 566	． 190	87.4	98.0	79.8	18．2
25	Sunday．							
26	． 735	． 881	． 577	． 304	81.5	93.0	72.6	20.1
27	． 790	． 867	． 700	.167	82.6	91.6	72.7	18.9
28	． 809	． 880	． 729	． 151	81.4	92.2	80.0	12.2
29	． 829	． 909	． 760	． 149	85.7	93.6	79.0	14.6
30	． 776	． 869	． 656	． 213	85.6	92.6	79.7	12.9
－•	．\cdot ．	－•••	．．．	－＊．	－••	－•••	．．	－••

The Mean height of the Barometer，as likewise the Mean Dry and Wet Bulb， Thermometers are derived from the twenty－fom hourly observations made during the day．

Alstraet of the Results of the Mourly Meteorologieal Olservations taken at the Surveyor General's Offiee, Caleutta, in the month of April, 1858.

Daily Means, \&cc. of the Observations and of the Hygrometrical elements dependent thereon. (Continued.)

Date.	$\begin{aligned} & \text { Mean Wet Bulb Thermo- } \\ & \text { meter. } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\circ}{\circ}$ 0 0 0 0 $\stackrel{0}{3}$	$\stackrel{\square}{0}$ 	$\begin{aligned} & \text { Mean Weight of Vapour } \\ & \text { in a cubic foot of Air. } \end{aligned}$		
	0	0	0	0	Inches.	T. gr.	T. gr.	
1	77.1	7.5	73.3	11.3	0.809	8.65	3.74	0.70
2	77.6	8.1	73.5	12.2	. 814	. 69	4.11	. 68
3	76.9	10.2	71.8	15.3	.771	. 20	5.13	. 62
4	Sunday.							
5	75.2	11.8	69.3	17.7	. 711	7.55	.74	. 57
6	72.1	14.3	64.9	21.5	. 615	6.55	6.51	. 50
7	74.7	11.2	69.1	16.8	. 706	7.52	5.35	. 58
8	74.1	12.3	67.9	18.5	. 679	. 22	.86	. 55
9	76.7	9.1	72.1	13.7	. 778	8.29	4.54	. 65
10	74.7	12.0	68.7	18.0	. 697	7.41	5.77	.56
11	Sunday.							
12	78.9	6.8	55.5	102	. 868	9.27	3.53	. 72
13	79.4	7.0	75.9	10.5	. 879	. 36	. 70	.72
14	79.3	6.9	75.8	10.4	. 876	. 35	. 64	. 72
15	78.9	7.2	75.3	10.8	. 862	. 19	.76	. 71
16	79.2	6.0	76.2	9.0	. 887	. 49	. 12	. 75
17	79.5	6.4	76.3	9.6	. 890	. 50	. 37	.74
18	Sunday.							
19	78.1	10.6	72.8	15.9	. 795	8.43	5.53	. 60
20	80.1	7.9	76.1	11.9	. 885	9.40	4.28	. 69
21	79.6	7.7	75.7	11.6	. 573	.28	. 13	. 69
22	80.0	7.0	76.5	10.5	. 896	. 54	3.75	. 72
23	80.0	8.6	75.7	12.9	. 873	. 26	4.66	. 67
24	78.6	8.8	74.2	13.2	. 832	8.85	. 60	. 66
25	Sunday.							
26	77.4	7.1	73.8	10.7	. 822	. 78	3.57	.71
27	76.0	6.6	72.7	9.9	. 792	. 61	. 17	. 73
28	78.8	5.6	76.0	8.4	. 882	9.45	2.86	. 77
29	78.8	6.9	75.3	10.4	. 862	. 21	3.59	. 72
30	79.4	6.2	76.3	9.3	. 890	. 52	. 24	. 75
-.	-••	-•••	-••	-••	-•••	-•••

All the Hygrometrieal elements are eomputed by the Greenwich eonstants.

Abstract of the Results of the ITourly MLeleorological Observations

 taken at the Surveyor General's Office, Calcutta, in the month of April, 1858.Hourly Means, \&e. of the Observations and of the Hygrometrical elements dependent thereon.

Hour.		Range of the Barometer for each hour during the month.				Range of the Temperature for each hour during the month.		
		Max.	Min.	Diff.		Max.	Min.	Diff.
	Inehes.	Inches.	Inches.	Inches.	o	o	0	o
Midnight.	29.781	29.815	29.606	0.149	81.5	83.6	76.3	7.3
1	. 771	. 822	. 675	. 1.17	81.1	83.0	76.0	7.0
2	. 755	. 802	. 667	. 135	80.8	83.4	74.8	8.6
3	. 748	. 812	. 666	. 146	80.2	82.8	54.2	8.6
4	. 758	. 818	. 681	. 137	79.8	81.8	73.7	8.1
5	. 771	. 810	. 658	.152	79.3	81.8	73.0	8.8
6	. 793	. 860	. 701	. 159	79.0	81.6	$7 \times .7$	8.9
7	.814	. 876	. 726	. 150	79.8	82.7	74.2	85
8	. 837	. 908	. 749	. 159	83.1	86.0	79.0	7.0
9	. 818	. 920	. 752	. 168	86.3	88.8	82.6	6.2
10	. 818	.912	. 717	. 165	89.1	92.3	86.0	6.3
11	. 835	. 889	. 227	. 162	91.7	95.6	87.6	8.0
Noon.	. 810	. 867	. 698	. 169	93.4	98.3	90.0	8.3
1	. 778	. 838	.662	. 176	91.8	100.0	8.).4	11.0
2	. 747	. 816	. 632	. 181	95.2	101.3	81.6	16.7
3	. 718	. 782	. 597	. 185	95.3	101.6	87.7	13.9
4	. 698	. 766	. 572	. 191	91.5	101.1	88.7	12.4
5	. 692	. 766	. 566	. 200	92.5	100.0	87.6	12.4
6	. 702	. 774	. 598	.176	89.6	94.3	$8: .8$	8.5
7	. 277	. 808	. 622	. 186	87.1	91.4	81.2	7.2
8	. 755	. 817	. 646	. 201	81.7	88.3	72.6	15.7
9	. 782	. 881	. 665	. 216	83.5	86.0	74.0	12.0
10	. 787	. 887	. 678	. 209	82.6	81.5	73.4	11.1
11	.78	. 874	. 669	. 205	82.0	83.7	${ }_{73.6}$	10.1

The Mean height of the Barometer, as likewise the Mean Dry and Wet Rulb Thernometers are derived from the observations made at the several hours during the month.

Abstract of the Results of the Mourly Meteorological Observations taken at the Surveyor General's Office, Calcutta, in the month of April, 1858.

Hourly Means, \&c. of the Observations and of the Hygrometrical elements dependent thereon. (Continued.)

Hour.		$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$						
	0	0	0	\bigcirc	Inches.	T. gr.	T. gr.	
Midnight.	77.1	4.4	74.9	6.6	0.851	9.15	2.16	0.81
1.	76.9	4.2	74.8	6.3	. 849	. 15	. 02	. 82
2	76.7	4.1	74.6	6.2	. 813	. 09	1.98	. 82
3	76.8	3.4	75.1	5.1	. 857	. 25	. 63	. 85
4	76.2	3.6	74.4	5.4	. 838	. 06	. 69	. 84
5	76.0	3.3	74.3	5.0	. 835	. 03	. 56	. 85
6	75.8	3.2	74.2	4.8	. 832	. 00	. 50	. 86
7	76.4	3.4	71.7	5.1	..846	. 14	. 61	. 55
8	77.7	5.4	\%5.0	8.1	. 854	. 16	2.70	. 77
9	78.4	7.9	74.4	11.9	. 838	8.93	4.09	. 69
10	79.2	9.9	74.2	14.9	. 832	. 82	5.30	. 63
11	79.3	12.4	73.1	18.6	. 803	. 46	6.77	. 56
Noon.	79.7	13.7	72.8	20.6	. 795	. 34	7.65	. 52
1	79.6	15.2	72.0	$2 \because .8$. 776	. 11	8.54	. 49
2	79.5	15.7	71.6	23.6	. 766	. 00	. 84	. 48
3	79.2	16.1	71.1	21.2	. 753	7.88	9.01	. 47
4	78.6	15.9	70.6	23.9	. 741	. 36	8.75	. 47
5	78.3	14.2	31.2	21.3	. 756	. 95	7.64	. 51
6	77.9	11.7	72.0	17.6	. 776	8.19	6.14	. 57
7	77.9	9.2	73.3	13.8	. 809	. 59	4.74	. 64
8	77.2	7.5	73.4	11.3	. 811	. 67	3.75	. 70
9	77.2	6.3	74.0	9.5	. 827	. 86	. 14	. 74
10	77.3	5.3	74.6	8.0	. 843	9.05	2.63	. 78
11	77.1	4.9	74.6	7.4	. 843	. 07	. 40	.79

All the Hygrometrical clements are computed by the Greenwich constants.

Abstract of the Results of the Mourly Miteorological Observations taken at the Surveyor General's Office, Calcutta. in the month of April, 185 s .
Solar Radiation, Weather, \&e.

$\stackrel{\tilde{\tilde{n}}}{\stackrel{\circ}{\mathrm{I}}}$			Prevailing direction of the Wind.	General Aspeet of the Sky.
	0	Inches.		
1	134.2	-	S.	Cloudless.
2	135.0	\cdots	S.	Cloudless.
,	147.0	..	S.	Cloudless.
5	Sunday.			
5	139.0	..	S. \& N. W. \& E.	Cloudy till 7 A. M. eloudless till 3 P. m. Scatd. Li \& \cap afterwards.
${ }_{6}$	137.0	.	S. \& S. W.	Scatd. Li till noon eloudless afterwards.
7	134.0	..	S. \& W.	Cloudless.
9	141.2	..	S. \& N. W.	Cloudless.
9	148.0	..		Clondless.
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	135.2	..	S.	Cloudless.
12	132.0	.	S. \& S. E. (high.)	Seatd. clouds till 4. A. M. cloudless till 5 p. M. Scatd. ᄂi afterwards.
13	135.0	.	S. (high.)	Clondless till 4 A. 3. Scatd. elouds afterwards.
,		\cdots	S. \& S. E.	Cloudless till 8 A. Mr. cloudy afterwards.
15	128.0	..		Cloudy till 4 A. Mr. Scatd. ᄂi \& $\cap \mathrm{i}$ till 4 P. 3r. cloudy afterwards.
16	130.0	..	S. \& S. E.	Various clouds till 8 P. a.cloudess afterwards.
17	130.5	.	S.	Cloudless till 4 P. M. cloudy till 9 r. गr. cloudless afterwards.
18	Sunday.			
19	148.6	.	Calm \& S	Cloudless.
20	138.0 130.0	\because		Cloudless.
21	130.0	-		Scatd, \i \& L_{i} till 3 P. M. eloudy after- wards.
22	132.5	..	S.	Seatd. clouds.
23	150.0	\cdots	S. S W	Cloudless.
2	143.0		S. \& S. W.	Cloudless.
25	Sunday.			
20	120.0	0.60		Seatd. Li till 6 P. M. eloudy afterwards, also raining, thundering and lightning between 8 and 10 P . m.
27	128.0		N. E. \& S. \& S. E.	Scatd. clouds.
28	12゙5.0	0.37	S. \& S. E.	Various clouds also raining between 1 and 2 p. . .
29	1300	.		Seatd. i \& Li till 1 p. M. eloudless afterwards.
30	130.0	..	S. (high.)	scatd. -i .

[^12]

Mean Dry Bulb Thermometer for the month,		..	86.2
Mas. Temperature oceurred at 3 P. M. on the 19th,		-	101.6
Min. Temperature occurred at 8 P. M. on the 26 th,		..	72.6
Extreme range of the Temperature during the mouth,		.	29.0
Mean of the Daily Max. Temperature,		..	95.8
Ditto ditto Min. ditto, ..		-	78.6
Mrean Daily range of the Temperature during the mont		..	17.2

0
Mean Wet Bulb Thermometer for the month, 77.8
Mean Dry Bulb Thermometer above Mcan Wet Bulb Thermometer, 8.4
Computed Mean Dew-point for the month, 73.6
Mean Dry Bulb Thermometer above computed mean Dew-point, 12.6
Inches.
Mean Elastic foree of Vapour for the month, 0.817
Troy grains.
Mean Weight of Vapour for the month, 8.70
Additional Weight of Vapour required for complete saturation, 4.29
Mean degree of humidity for the month, eomplete saturation being unity, 0.67

			Inehes.	
Rained 4 days, Max. fall of rain during 24 hours,	0.60	
Total amount of rain during the month,	0.97
Prevailing direction of the Wind,	S.

Alstract of the Rcsults of the Hourly Meteorological Observations taken at the Surveyor General＇s Office，Calcutta， in the month of April，185S．

Montilly Results．

Table showing the number of days on which at a given hour any particular wind blew，together with the number of days on which at the same hour when any particular wind was blowing it rained．

Foosencers conno		
－cor to 10		！
		Rain on．
ート	■ーナートセーーーセーセ	N．E．
		Rain on．
10ーー ーートNロ」	ー ー ーャー 岛	！
$-$	$\checkmark \quad \circ$	Rain on．
Nocecotoco 100ヶーナ		0
$\xrightarrow{-}$		Rain on．
		¢
\cdots	$\checkmark \quad-$	Rain on．
ー		S．W．
\square		Rain on．
	1010－	$\bar{\square}$
		Rain on．
いーーーナーv゚ー－	ハーーナー	N．W．
		Rain on．
$\vdash \vdash$	ーナートーール	Calm．
		Rain on．
－	corto	Missed．

For whe be butwour onl?

[^0]: * Dr. Trench has spoken boldly, but wisely, on the subject of bettering our English Dictionaries; and one most important respect in which they are capable of melioration is, as he urges, in the way of retrenchment. On the point of the claim of compounds to be inserted in our dictionaries, he holds the following language: "When words have been brought into close connexion with one another, not in the choice or caprice of one writer, and on a single occasion or

[^1]: * Our industrious Teuton appears, in truth, to have copied, however unconsciously, the method of our English dictionarics, as they were loosely styled, which preceded that of Johnson. These disordcrly repertories, Dr. Trench describes as being " not dictionaries of words only, but of persons, places, things : they are gazetteers, mythologies, scientific encycloprodias, and a hundred things more; all, of course, most imperfectly, even according to the standard of knowledge of their own time, and with a selection utterly capricious of what they put in, and what they leave out." On some Deficiencies, \&c., p. 45.
 \dagger The learned and judicious critic already twice cited speaks for all the world, equally as for himself,-the sciolists who cling to the shade of Dr . Webster excepted,-when he says: "To me there is no difference betwcen a word absent from a dictionary, and a word there, but unsustaincd by an authority. Even if Webster's Diclionary were in other respects a better book, the almost total absence of illustrative quotations would deprive it of all value in my eyes." On some Deficiencies, \&e., p. 7, foot-note.

[^2]: * Poonji $=$ village.

[^3]: * Sec Schumacher's Ast. Nach. No. 356. Taylor's Mem. Vol. II.

[^4]: * Sec a Table of this kind in Dixon's Treatiso on Meat, p. 257-260.

[^5]: * Jour. Asiat. Soc. of Bengal, April 1833, pp. 191200.

[^6]: * Amn. de Chim. et de Phys. July 1814. Forbes, Edin. Phil. Traus. vol. axi part II. p. 238.
 \dagger Bullet. de la classe Plysico-math. de l'Acad. de St. Petersbourg, siii. 41

[^7]: * Laplace, Systeme du Monde, tom. i. p, 172 (Ed. 1836.)
 \dagger On this subject, sec a paper by Professor Challis, in the Transactions of the Cambridge Plilosophical Society, vol. vi. ; and Danicll's Meteorology, vol. i. pp. 40, 41.

[^8]: * Dr. Golding Bird's Natural Philosophy, p. 208.

[^9]: * These eorrections are in some eases very different, but those in eolumn (6) are probably in general the most trustworthy, as best agrecing with the observations of Schouw, Sir J. Hersehel, Sir James Ross, \&c. See Daniell's Meteorology, (Ed, 1845) rol. I. pp. 132, 133.

[^10]: * Lindenau followed Euler and Oriani in supposing the temperature of tho air to diminish in harmonical progression through a series of heights inereasing in arithmetical proportion. His form of the term depending upon the temperature was-

 $$
 1+\frac{t+t^{\prime}-64}{900}-\frac{\left(t-t^{\prime}\right)^{2}}{810,000}
 $$

 t and t^{\prime} being in degrees Fahrenheit. Lindenau's Thables (Gutha 1809) were in some respeets the best published in the carly part of this century.

[^11]: * There is also a way through Kokrang and Dong Ailak, by whieh he might get into the ordinary route on this side of the Karakorum.

[^12]: \i Cirri, ᄂi Cirro strati, \cap_{i} Cumuli, n_{i} Cumulo strati, \boldsymbol{h}_{i} Nimbi, $-i$ Strati, h i Cirro cumuli.

